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Abstract—In this work, we present two novel importance sam-
pling (IS) methods, which can be considered safe in the sense that
they avoid catastrophic scenarios where the IS estimators could
have infinite variance. This is obtained by using a population of
proposal densities where each one is wider than the posterior
distribution. In fact, we consider partial posterior distributions
(i.e., considering a smaller number of data) as proposal densities.
Neuronal variational approximations are also discussed. The
experimental results show the benefits of the proposed schemes.

Index Terms—Bayesian inference, Markov Chain Monte Carlo
(MCMC), multiple importance sampling (MIS), variational ap-
proximations, neural networks, partial posteriors.

I. INTRODUCTION
Bayesian inference requires efficient Monte Carlo schemes,

such as Markov chain Monte Carlo (MCMC) and importance
sampling (IS) for the computation of a posteriori quantities
[1]–[5]. In this work, we focus on IS schemes. Below, we
describe the four main factors, denoted with (a), (b), (c)
and (d), that are contained in the benchmark and advanced
IS methods (currently in the literature), and explain their
success.
As in the rest of Monte Carlo methods, in IS, the choice of
a suitable proposal density function (pdf) is key to obtain
efficient estimators for such quantities [6]–[9]. For this
reason, a large body of literature has devoted to the design
of good proposal pdfs in IS [10], [11]. In order to increase
the robustness, (a) the use and the adaptation of a population
of proposal pdfs is often employed. In this scenario, (b) an
optimal construction of the importance weights is available
which considers all the mixture of proposal pdfs. This
technique is usually referred as multiple IS (MIS) [12]–[16].
Moreover, since the high probability mass represented by
the posterior density is often concentrated in a very small
space of the domain, many Monte Carlo methods (including
IS) often struggle to find the high probability regions. In
order to foster the space exploration, (c) tempered, hence
wider posterior versions are usually considered. This can
be obtained by adding an additional scale parameter (called
temperature) to the posterior, or considering a smaller number
of data (this is called data tempering) [17]–[21].
The last main characteristic is related to the adaptation
process. In fact, in the last decades, many very efficient IS
schemes have been designed by combining the IS idea with
the benefits provided by the MCMC algorithms [22]–[27].
For instance, (d) the adaptation of the population of proposal
pdfs can be obtained by performing MCMC steps. This is the

case in the Layered Adaptive IS (LAIS) and its extensions
[27], [28]. The MCMC steps are employed in order to
locate the mean of the proposal pdfs in high-posterior
probability regions of the posterior. LAIS combines the
desired exploratory behavior of MCMC methods with the
advantages of an IS scheme (easier theoretical validation,
easier estimation of the marginal likelihood, etc.).
In this work, we propose novel IS schemes which involve all
the four reasons of success (a), (b), (c) and (d), described
above. Specifically, we describe two different methods. Both
are cheaper than LAIS in terms of total number of posterior
evaluations (at least, they require half evaluations with respect
to LAIS). In the first proposed scheme, partial posteriors
(i.e., data-tempered posteriors) are used as a population of
proposal densities in MIS approach. We called this framework
as Partial Posteriors IS (PAPIS). The combination of using
multiple proposals and the data-tempering effect (which
provides wider partial posteriors than the full-posterior)
yields a robust scheme that avoids catastrophic scenarios
where the IS estimators could have infinite variance [1], [21].
In this sense, the proposed approach is a safe IS scheme.
However, PAPIS require the efficient computation of the
partial marginal likelihoods of each partial posterior, which
is not a straightforward task. In order to overcome this
issue, we introduce the neural PAPIS, where, we fit neural
variational approximations to the partial posteriors and use
them as proposal pdfs. Variational approximations can be
crude approximations to the true distributions, but they are
cheap and fast to compute, and also fulfill the requirements
of being easy to sample and evaluate. The experiments show
the benefits of the proposed methods.

Other related works. The combination of IS and variational
approximations has already being considered in the literature
[29]–[32]. Broadly speaking, one can either use variational
methods to improve the construction of IS algorithms [31],
[33], [34]; or employ IS ideas to improve the computation of
variational bounds, e.g., [32]. Our work makes a contribution
to the former group of approaches. In this context, in [34],
variational algorithms are used for building a good initial set
of proposal pdfs that are then evolved using an AIS algorithm.
Furthermore, the authors in [33] propose an adaptive IS (AIS)
algorithm where variational autoencoders are employed for
generating the samples. In [31], we can find possibly the
closest approach to our proposed methotologies. There, the
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authors propose to obtain a mean-field approximation of the
posterior pdf for use in IS. In this sense, we improve on
their work by proposing to learn instead a robust population
of proposals, each one approximating a different partial
posterior pdf (rather than the complete posterior). PAPIS
presents also some connections with the Recycling LAIS
(RLAIS) presented in [28]. If, instead of MCMC samplers,
other IS schemes are employed to approximate the partial
posteriors, PAPIS can be interpreted as a special case of Deep
IS, described in [35].

II. PROBLEM STATEMENT AND BACKGROUND

A. Problem statement

Let x ∈ X ⊆ Rdx be the variable of interest and consider
a matrix of observed measurements, Y = [y1, . . . ,yL] ⊂
Rdy×L. In the Bayesian framework, one complete model
is formed by a likelihood function `(Y|x) and an a-priori
probability density function (pdf) g(x). All the statistical
information is summarized by the posterior pdf,

π̄(x|Y) =
`(Y|x)g(x)∫

X `(Y|x′)g(x′)dx′
. (1)

The denominator plays the role of a normalizing constant,
Z = p(Y) =

∫
X `(Y|x)g(x)dx. The quantity Z is called

marginal likelihood (a.k.a., Bayesian evidence) and is impor-
tant for model selection [21]. Generally, we are interested
in computing integrals with respect to (w.r.t.) the posterior
pdf I =

∫
X f(x)π̄(x|Y)dx = 1

Z

∫
X f(x)π(x|Y)dx, where

π̄(x|Y) ∝ π(x|Y) = `(Y|x)g(x) and f(x) is some inte-
grable function.

B. Multiple Importance sampling

In IS, the use of a population of proposal pdfs (instead
of only one proposal) often increases the robustness of the
results. In the so-called multiple IS (MIS) [12], [13], we
have a population of M normalized proposal pdfs, qm(x) for
m = 1, . . . ,M , and {x(m)

i }Ni=1 denotes the sets of N samples
drawn from each of them. By assigning the following full-
deterministic mixture weights [12]

w
(m)
i =

π(x
(m)
i |Y)

1
M

∑M
s=1 qs(x

(m)
i )

, (2)

for all i = 1, . . . , N and m = 1, . . . ,M , we can
compute the self-normalized estimator of I , with Î =∑M

m=1

∑N
i=1 w

(m)
i f(x

(m)
i )∑M

s=1

∑N
j=1 w

(s)
j

. Furthermore, the marginal likelihood

can be approximated by Ẑ = 1
NM

∑M
m=1

∑N
i=1 w

(m)
i . There

exist different ways of choosing and adapting the population
of proposal pdfs [10], [11].

III. PARTIAL POSTERIOR DENSITIES

The posterior distribution is often highly concentrated, mak-
ing difficult to discover the regions of high-probability in the
state-space, and hence jeopardizing the construction of good
proposal pdfs. The underlying idea of using a tempering effect
is to consider wider posteriors in the first iterations of the

applied Monte Carlo algorithm. This effect can be obtained
by adding an additional scale parameter to the target density
or considering a smaller number of data [17]–[20]. The MIS
scheme and the tempering effect are included in sophisticated
and benchmark techniques, so far in the literature. For this
reason, in this work, we suggest a new methodology for
efficiently combining both approaches. For this purpose, we
need to define the partial posterior densities, i.e., posteriors
considering only subsets of data [36]–[38]. Let {Y1, . . . ,Yb}
denote a partition of the data in B (possibly non-overlapping)
subsets, i.e.,

Y =

B⋃
b=1

Yb, B ≤ L, (3)

where

Yb ∈ Rdy×Lb , Lb ≤ L,
B∑
b=1

Lb = L. (4)

For each subset Yb, we consider its posterior pdf (i.e. a partial
posterior)

π̄b(x) = p(x|Yb) =
1

Zb
`(Yb|x)gb(x), b = 1, . . . , B, (5)

where `(Yb|x) denotes the likelihood of the subset Yb,1

Zb =
∫
X `(Yb|x)gb(x)dx, and gb(x) denotes a partial prior

pdf. When disjoint sets are considered Yb ∩ Yb′ = ∅ and
each subset Yb has the same number of observations (i.e.
Lb = L

B for all b), a typical choice is gb(x) ∝ g(x)
1
B [36]–

[40]. The partial posteriors π̄b(x) is a data-tempered (hence
wider) version of the full posterior π̄(x) [17], [18].

IV. PARTIAL POSTERIOR IMPORTANCE SAMPLING (PAPIS)

In this section, we describe the scheme partial posterior
importance sampling (PAPIS). The main idea is to use the
population of B partial posteriors as proposal densities to per-
form MIS on the full posterior. This is particularly appealing
since the partial posteriors are in some sense wider versions of
the full posterior, and hence they are robust choices of proposal
pdfs (avoiding the catastrophic scenario of infinite variance).
Since in general we are not able to draw samples from the
partial posteriors, in PAPIS, we suggest running B different
MCMC chains on the partial posteriors π̄b, and then use the
obtained chains as samples in a MIS scheme.2 The algorithm
is outlined in Table I.
Important considerations. PAPIS uses the set of partial
posteriors, π̄b(x|Yb) for b = 1, . . . , B, as proposal pdfs. This
ensures to avoid catastrophic IS scenario with estimators with
infinite variance. Another advantage of PAPIS with respect
to the similar LAIS algorithm (which employs also MCMC
samples) is that the overall number of target evaluations is
E = NT whereas in LAIS is at least double, E = 2NT

1Here, we assume one can compute the likelihood of subsets of data.
2Clearly, this is an approximate strategy but, if the chains are long enough

and after a burn-in period, the samples can be considered distributed as the
corresponding partial posterior.
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TABLE I
PARTIAL POSTERIOR IMPORTANCE SAMPLING (PAPIS).

- Sampling: Generate BT samples, xb,1, . . . ,xb,T for
b = 1, . . . , B, using B (independent or interacting) MCMC
chains, each one addressing a different invariant density
π̄b(x|yb).
- Normalize:

1) Obtain Ẑb, an estimation of the partial marginal
likelihood Zb of the partial posterior π̄b, via Reverse
Importance Sampling (RIS) or using any other suit-
able method for estimating marginal likelihoods via
MCMC samples [21], [41], for all b = 1, . . . , B.

2) Set
π̂b(x|Yb) =

1

Ẑb
πb(x|Yb), (6)

for b = 1, . . . , B.
- Weighting: Assign to xb,t the weights

wb,t =
π(xb,t|Y)

1
B

∑B
b=1 π̂b(xb,t|Yb)

. (7)

- Output: Return all the pairs {xb,t, wb,t}.

[27], [28]. However, the use of partial posteriors as proposals
entails two difficulties in practice: (i) we cannot sample them
directly, (ii) we cannot evaluate them in closed form, due to
the unknown normalizing constants Zb =

∫
X `(Yb|x)gb(x)dx,

b = 1, . . . , B. Therefore, we consider an approximated sam-
pling using MCMC algorithms and an estimation Ẑb can
be obtained by any suitable procedure (e.g., reverse impor-
tance sampling) using the same states of the generated chain
xb,1, . . . ,xb,T [21], [41]. Obtaining good estimations of all
Z ′bs is the trickier part of the PAPIS algorithm: this step can
jeopardize the performance of the resulting PAPIS estimators.
In the next section, we try to overcome these issues by building
neural variational approximations to each partial posterior. The
variational approximations are cheap and powerful approxima-
tions, that allow us to sample and evaluate them in direct form.

V. NEURAL PAPIS

In this section, we introduce our proposed approach, con-
sisting in two separated stages. At stage 1, we divide data
Y into B subsets, Y1, . . . ,Yb, and run parallel variational
inference algorithms in order to learn the optimal parameters
φ∗b for the variational approximations to each partial posterior

qφ∗b (x|Yb) ≈ π̄(x|Yb), b = 1, . . . , B.

At stage 2, we apply MIS to the population {qφ∗b (x|Yb)}Bb=1,
that is, we sample N times from each q

(b)
φ∗b

(x) and weigh
the final NB samples according to Eq. (2). This scheme
is summarized in Table II. Note that the construction and
sampling of the qφ∗b (x|Yb) can be done in parallel, and only in
the weighting step one needs to communicate all the proposals

qφ∗b (x|Yb) and samples {x(b)
n }Nn=1 to a central node.

Compared to PAPIS, with this neuro-variational solution (de-
noted as Neural-PAPIS), we can draw independent samples
from the partial posterior approximations qφ∗b (x|Yb) as well as
evaluate them exactly. On the other hand, a potential difficulty
of the proposed approach is that the variational proposals could
represent only “crude” approximations to the partial posteriors
(especially when the chosen variational family is very simple),
and hence produce final estimators with low efficiency [31].

A. Building the partial posterior approximation

In this section, we aim to learn an approximation of the
partial posterior π̄(x|Yb), given our knowledge of the likeli-
hood function and the prior. Assume a family of pdfs, qφ(x),
parameterized by parameter vector φ. We consider building a
variational approximation to each partial posterior π̄(x|Yb),

qφ∗b (x|Yb) ≈ π̄(x|Yb) ∝ `(Yb|x)gb(x), b = 1, . . . , B,
(8)

where the optimal parameters are determined by maximizing
the so-called Evidence-Lower-Bound (ELBO) [42]

φ∗b = arg max
φ
L(φ,Yb), (9)

where

L(φ,Yb) = Eqφ(x|Yb) [log `(Yb|x)]−KL (qφ(x|Yb)||gb(x)) .
(10)

For instance, we can take the variational family to be Gaussian
(which is the one that we tested in the experiments),

qφ(x|Yb) = N [x|µφ(Yb),Σφ(Yb)] , (11)

where

µφ(Yb) : Rdy×Lb → Rdx (12)

Σφ(Yb) : Rdy×Lb → Rdx×dx , (13)

are the outputs of a neural network (NN) with weights and
biases given by φ. For simplicity, we assume Σφ is a diagonal
covariance matrix, and that we actually learn the logarithm of
its diagonal.

VI. NUMERICAL SIMULATIONS

For testing our proposed approach, we address the problem
of positioning a target on a two dimensional space from the
measurements this produces in a wireless net of sensors.
Let us consider the random vector x ∈ R2 as the target
position. In the net, we have L sensors whose positions are
known and denoted as s1, . . . , sL. Given that we observe M
measurements from every sensor, these follow the distribution

ym,l ∼ N
(
−A log

(
‖ x− sl ‖22

)
, σ2
)
, m = 1, . . . ,M

(14)

where the parameter A is a constant related to how fast the
signal degrades with the distance and it can depend on many
conditions such as environmental or manufacturing ones. We
assume that the variance σ2 is known and equal for all sensors.
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TABLE II
NEURAL PAPIS

- Initialization: Partition {Y1, . . . ,Yb} and prior pdfs
gb(x) (b = 1, . . . , B).
- For b = 1, . . . , B: (in parallel)

1) Proposals contruction. Obtain qφ∗b (x|Yb) by maxi-
mizing L(φ,Yb) in Eq. (10).

2) Sampling. Draw {x(b)
n }Nn=1 ∼ qφ∗b (x|Yb).

- Weighting: For all n = 1, . . . , N and b = 1, . . . , B,
compute

w(b)
n =

π(x
(b)
n |Y)

1
B

∑B
s=1 qφ∗s (x

(b)
n |Ys)

, w̄(b)
n =

w
(b)
n∑B

s=1

∑N
j=1 w

(s)
j

.

- Outputs: The NB weighted samples {x(b)
n , w̄

(b)
n }, n =

1, . . . , N , b = 1, . . . , B.

We set A = 10 and σ2 = 5. We consider only three sensors
with positions s1 = [0.5, 1]T , s2 = [3.5, 1]>, s3 = [2, 3]>.
We took the target position at xtrue = [−1, 2]> for gen-
erating the observations (i.e. the ground-truth). We simulate
15 observations per sensor from the model in Eq. (14), i.e.,
Y = {y1, . . . ,y15}, where ym = [ym,1, ym,2, ym,3] ∈ R3.
We use a standard Gaussian as prior distribution over x. In this
toy example, we can compute the (diagonal of the) moments
numerically using a thin grid over the parametric space, to get
µ = [−1.01, 1.84]>, and µ(5) = [−1.11, 22.31]>.
The previous quantities were estimated using the proposed
approach. In order to apply Neural-PAPIS, we run B parallel
variational inference algorithms. Specifically, for each batch
Yb, we consider an architecture with one hidden layer of
50 neurons, and used the Adam optimizer for training during
1000 epochs [43]. Several number of batches B were tested:
B ∈ {1, 3, 5, 15}, and in every case the total number of
samples drawn in the IS phase was fixed at 300 and 600 (i.e.
N = 300

B or N = 600
B samples per proposal, respectively).

For obtaining the batches, we always partition the data in B
batches with even number of observations. We calculate the
mean square error (MSE) in the estimation of µ and µ(5) over
500 simulations. The results were compared with PAPIS using
5000 and 10000 samples, namely, a much larger number of
evaluations than Neural-PAPIS. The results of the comparison
are presented in Figure 1. In the y-axis we used the log scale
for a better visualization.
In Figure 1-above, we see how both approaches are valid
to solve the location problem, the Neural-PAPIS obtaining
a very low MSE in the estimation of the posterior mean
µ when B = 3, close to PAPIS with E = 10000 total
evaluations. We stress that we deliberately chose PAPIS with
much more number of evaluations (E ∈ {5000, 10000}) than
Neural-PAPIS (E ∈ {300, 600}) in order to show the benefits
of the proposed approach. In fact, regarding the estimation
of µ(5), in Figure 1-below, Neural-PAPIS with only 600

evaluations significantly outperforms PAPIS with considerable
more evaluations. Furthermore, as expected, both Figures show
that the use of partial posteriors improve the results compared
to using a full posterior, which corresponds to B = 1. We
also recall that Neural-PAPIS with B = 1 correspond to
using the variational approximation to the full posterior as
a single proposal (as in [31]). We see that better results are
obtained if we use a population of wider proposals instead,
i.e., B > 1. Interestingly, the curves feature a minimum MSE
around B = 3, suggesting that there possibly exists an optimal
number of batches, B∗, which is worth investigating in the
future. We have also compared the results obtained by PAPIS
schemes, with a standard Population Monte Carlo (PMC) [44].
The best result of PMC with the bigger number of evaluations
E = 105 has been an MSE of order 10−2 for the first moment
and an MSE of order 102 for the fifth moment. Hence, all the
PAPIS schemes outperform the PMC.

0 5 10 15
B

10-4

10-3

Neural-PAPIS (E=300)
Neural-PAPIS (E=600)
PAPIS (E=5000)
PAPIS (E=10000)

0 5 10 15
B

10-2

100

102
Neural-PAPIS (E=300)
Neural-PAPIS (E=600)
PAPIS (E=5000)
PAPIS (E=10000)

Fig. 1. MSE of Neural-PAPIS and PAPIS when estimating the first moment
(above) and the fifth moment (below). The number of evaluations is denoted
by E.

VII. CONCLUSIONS

In this work, we presented a framework for robust and
safe IS based on the use of multiple partial posteriors (i.e.,
posteriors of subsets of data) within a MIS scheme, which
we called PAPIS. This framework combines two powerful
ideas that feature in many IS algorithms, namely, (data)
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tempering and proposals population. However, this simple
framework requires exact sampling and evaluation of partial
posteriors. We bypass this problem by building variational
approximations to each partial posterior and then use them as
proposals. The (neural) variational approximations are cheap
and fast to compute (parallelization is also possible), and give
results that outperform the naive application of PAPIS, as we
showed in the experiment.
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adaptive importance sampling based on variational inference,” in 2018
26th European Signal Processing Conference (EUSIPCO). IEEE, 2018,
pp. 1632–1636.

[35] F. Llorente, L. Martino, D. Delgado, and G. Camps-Valls, “Deep
importance sampling based on regression for model inversion and
emulation,” Digital Signal Processing, vol. 116, pp. 103104, 2021.

[36] S. L. Scott, “Comparing consensus Monte Carlo strategies for distributed
Bayesian computation,” Braz. J. Probab. Stat., vol. 31, no. 4, pp. 668–
685, 2017.

[37] W. Neiswanger, C. Wang, and E. Xing, “Asymptotically exact, embar-
rassingly parallel MCMC,” arXiv:1311.4780, 2013.

[38] D. Luengo, L. Martino, V. Elvira, and M. Bugallo, “Efficient linear
fusion of partial estimators,” Digital Signal Processing, vol. 78, pp.
265–283, 2018.

[39] S. L. Scott et al., “Bayes and big data: The consensus Monte
Carlo algorithm,” International Journal of Management Science and
Engineering Management, vol. 11, no. 2, pp. 78–88, 2016.

[40] L. Martino and V. Elvira, “Compressed Monte Carlo for distributed
Bayesian inference,” viXra:1811.0505, pp. 1–14, 2018.

[41] F. Llorente, L. Martino, D. Delgado, and J. Lopez-Santiago, “On the
computation of marginal likelihood via MCMC for model selection and
hypothesis testing,” in 28th European Signal Processing Conference
(EUSIPCO), 2020, pp. 2373–2377.

[42] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.
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