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Abstract—Multiple particle filtering was proposed as an al-
ternative to particle filtering when tracking states in systems
of high dimensions. Multiple particle filters are comprised of
a network of particle filters assigned to track subsets of the
state, and require each other’s obtained information to carry out
the filtering. Many improvements of multiple particle filtering
have been proposed, however, there have been only a few
efforts studying the effects of state partitioning on the filtering
performance. In this paper, we propose two novel partitioning
schemes for improved accuracy of multiple particle filtering based
on: i) random permutations, and ii) the connectedness of the
states, i.e. the topology of the system. Computer simulations
show that the filter significantly benefits from state permutations,
especially when driven by the information in the topology.

I. INTRODUCTION

A complex dynamical system can be often described as a
network of interacting components which evolve the system as
a whole. The components, also seen as the states of the system,
are directly or indirectly observed and their interactions can
be nonlinear. Complex systems are very abundant in nature
and in engineering. Some examples include gene regulatory
networks [1], sensor networks [2], target tracking [3], and
chemical reactions [4].

Particle filters (PFs) have been traditionally used for in-
ference and prediction of dynamical systems, especially in
online applications. Their popularity rose relative to other
filters (e.g., Kalman filter and its variations [5], [6], [7], [8])
as they can deal with systems of nonlinear and non-Gaussian
nature. However, their applicability is limited to relatively
small systems, as their performance collapses under the curse
of dimensionality [9]. Unfortunately, many complex systems
are characterized by high dimensions and cannot be handled
by standard PFs. Additionally, the computational cost of PFs
grows with the number of particles used, rendering them as
an expensive methodology. Over a decade ago, the multiple
particle filter (MPF) was introduced in [10] to tackle the curse
of dimensionality. MPFs work by splitting the system into
subsystems and assigning a separate PF to track the marginal
density of the states representing the subsystem at hand. In
order to carry out the filtering, the PFs need to communicate
their respective estimates and/or predictions of the marginal
densities to each other. The remarkable performance of the
MPF has been demonstrated in [3], [11], [12], [13], [14],
among others. Several improvements of the MPF have been

proposed, such as the filters communicating only means and
covariances of the states they track [15], using iterations for
obtaining the best possible predictions [16], and other related
alternatives (e.g., [17], [18], [19]). There have only been a few
approaches addressing state-space partitioning for improved
filtering in multiple particle filtering. The work in [20] pro-
poses a probabilistic strategy on adaptive state partitioning
based on the cross-correlation of the subsystems at each
time instant, however, their focus mainly sits in state-space
models (SSMs) in which the states are separable in the process
equation, as is usually the case for multiple target tracking.
Another approach in [21], proposes a symbiotic PF, where the
state-space partitioning depends on the distance of the targets
tracked. Two given targets are considered connected and can
cooperate if they are travelling paths in close proximity. They
share one PF until they part ways, in which case the filtering
continues by each target getting assigned its own separate PF.
The symbiotic PF considers cases in which the connectedness
of the components is dynamic and determined based on the
distances between them. However, there are scenarios where
the relationships between components are well-defined in the
model itself and remain fixed. It is also important to note that
not all components of the system interact with each other.
The connectedness of these components is referred to as the
topology of the system, and can play a significant role in
system partitioning. To the best of our knowledge, none of the
existing approaches specifically target state-space partitioning
based on the topology.

In this paper, we propose methods for partitioning of the
system in MPFs for improved filtering. In particular, we
explore two different partitioning schemes based on: i) uniform
randomness, and ii) topology-informed randomness. Computer
simulations demonstrate that the MPFs with the newly pro-
posed partitioning schemes outperform the MPF with original
partitioning. In fact, the MPF with the topology based parti-
tioning scheme shows the most significant improvement.

II. PROBLEM FORMULATION

Consider a dynamical system characterized by the SSM:

x0 ∼ p(x)

xt = fx(xt−1,ut)

yt = fy(xt,vt), t = 1, . . . , T,

(1)
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where xt ∈ Rdx is the state of the system at time t, and yt ∈
Rdy is a collection of direct and/or indirect observations of
xt. The system evolves according to fx(·, ·) with randomness
captured by the process noise ut, and the states are observed
through fy(·, ·) with some observation noise vt. The system
we consider is Markovian [22], and is initialized by sampling
the state x0 from its prior p(x).

III. MULTIPLE PARTICLE FILTER

Standard PFs collapse when dealing with systems of high
dimensions. MPF, which works on the principle of divide
and conquer was introduced as a way to alleviate this issue.
More formally, an MPF partitions the state at time t as
xt = [x⊤

1,t,x
⊤
2,t, ,x

⊤
K,t]

⊤, where xk,t ∈ Rdk is the state vector
of partition k. Each partition is addressed by a separate PF,
and not all partitions need to be the same size. The kth PF
approximates the marginal posterior p(xk,t|yt) by generating

a discrete random measure Xk,t =
{
x
(mk)
k,t , w

(mk)
k,t

}Mk

mk=1
,

composed of Mk particles xk,t, and their associated weights
wk,t . The workflow of MPF for one time instant t can be
summarized with the following steps:

1. At time t, each filter k proposes Mk particles by sampling

x
(mk)
k,t ∼ p(xk,t|x(mk)

k,t−1, x̂−k,t−1), mk = 1, . . . ,Mk, (2)

where x̂−k,t−1 are the estimates of all the partitions
from the previous time step except the kth, i.e.
x̂⊤
−k,t−1 = [x̂1,t−1, . . . , x̂k−1,t−1, x̂k+1,t−1, . . . , x̂K,t−1].

These estimates are made available by the exchange of
information from the other filters at the end of the previous
time step.

2. The proposed particles can be used to obtain predictions
of the current state xt as

x̃k,t =
1

Mk

Mk∑
mk=1

x
(mk)
k,t . (3)

The kth filter sends these predictions to the rest of filters,
and receives the predictions x̃−k,t obtained from the rest of
the filters, where x̃−k,t is defined similarly as x̂−k,t−1 .

3. The filters use the obtained predictions and estimates to
update the weights according to

w̃
(mk)
k,t ∝ w̃

(mk)
k,t−1

p(yt|x(mk)
k,t , x̃−k,t)p(x

(mk)
k,t |x̂−k,t−1)

q(x
(mk)
k,t |x̂−k,t−1,yt)

. (4)

Here, the numerator represents the likelihood and the
transition density, and the denominator is the proposal
distribution evaluated at the mkth particle (see [10], [22] for
thorough definitions and derivations of PF). The updating
factor is an approximation as it uses estimates and predictions
of all the state partitions excluding the kth element.

4. Normalize the weights as

w
(mk)
k,t =

w̃
(mk)
k,t∑Mk

n=1 w̃
(n)
k,t

, for mk = 1, . . . ,Mk. (5)

5. Obtain the estimates of the states of each partition xk,t

using the weights, for e.g.

x̂k,t =

Mk∑
mk=1

w
(mk)
k,t x

(mk)
k,t . (6)

6. Resample when necessary to avoid weight degeneracy
[22].

Note that not every filter needs to exchange information.
This depends on the separability in the state and/or the
observation equations, as we will elaborate in Section IV-B.

IV. PROPOSED PARTITIONING SCHEMES

Traditional MPFs fix the partition sizes before the start
of the filter, and fix the chosen states within the partitions
throughout the entire trajectory. In the following two subsec-
tions, we look at two ways of partitioning the state-space for
improved filtering.

A. Random Partitioning

This scheme remains with fixed partition sizes as the
original MPF, however, there are two key differences: i) the
partitions are of equal size (with potentially only one partition
of smaller size, depending on the total size of the system), and
ii) at each time instant, the states occupying a given partition
are chosen uniformly. For example, if the state at time t is
x⊤
t = [x1,t, x2,t, x3,t, x4,t, x5,t], we can obtain 3 partitions

xk,t, for k ∈ {1, 2, 3} of dimensions of dk ∈ {2, 2, 1}. The
dimensions dk remain fixed, but the states in the partitions
will change at each t (see Table I). Note that, because we are
propagating the particles to new partitions, we are limited to
using the same number of particles Mk for each partition k,
i.e. Mk = M

k , where M is the total number of particles used
for the MPF. Otherwise, the new partitions may be formed of
states with different number of particles and a joint generation
of new particles may be difficult or impossible. There are ways
to alleviate this issue (e.g. replicate particles of some states to
match others, and/or use estimates), but we will not consider
this in this paper due to lack of space.

The random partitioning scheme was motivated by the
idea of reducing the error introduced by the exclusion of

Partition 1 Partition 2 Partition 3
...

...
...

...
Time t− 1 x3,t−1, x4,t−1 x5,t−1, x1,t−1 x2,t−1

Time t x2,t, x3,t x5,t, x4,t x1,t
Time t+ 1 x5,t+1, x4,t+1 x2,t+1, x3,t+1 x1,t+1

...
...

...
...

TABLE I: Example of random partitioning of a state with
dimension dx = 5.
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states when partitioning. When separating two given states in
different partitions and fixing this separation throughout the
filtering, the information due to the coupling between the states
is lost. By permuting the states in the partitions, every state
“gets the chance” to be coupled with other states throughout
a complete trajectory.

B. Topologically Weighted Random Partitioning

The topology based partitioning scheme was designed to
make use of the connectedness between the states in time.
We considered the separability in the state equation, i.e., we
partitioned the states based on their contributions (and the
strengths of their contributions) to a given state in the next
time instant. To illustrate this separability, we give a short
example with dx = 4. Consider the state equation

x1,t = c11x1,t−1 + c13x3,t−1 + c14x4,t−1 + u1t

x2,t = c21x1,t−1 + c22x2,t−1 + u2t,

x3,t = c32x2,t−1 + c33x3,t−1 + c34x4,t−1 + u3t,

x4,t = c41x2,t−1 + c44x4,t−1 + u4t,

(7)

where cij , for i ∈ {1, . . . , 4}, and for j ∈ {1, . . . , 4} are (in
this case) known parameters signifying the contribution of
the state xj,t−1 to the state xi,t. Let us consider the first two
states x1,t and x2,t. Notice that c12, c23, and c24 are equal to
0. In that sense, we can say that the state x1,t is separable
from x2,t−1, and the state x2,t from x3,t−1, and x4,t−1. A
similar statement can be made for all states xi,t. In practice,
we would be dealing with much higher dimensions where the
effect of these connections is more pronounced. The topology
weighted random partitioning scheme can be summarized in
the following steps:

1. Initialize the set of state indices Sj ∈ {1, . . . , dx} with
number of elements dj = dx.

2. Use multinomial sampling to choose a random state
index Ni with p(Ni = i) = 1

dj
.

3. Compute, what we term, the weights of connectedness
of the states in the ith row as

ω
(j)
i =

|cij |∑
ℓ∈Sj

|ciℓ|
, for j ∈ Sj (8)

We take the absolute value of the coefficients as we are only
interested in the strength of the connection.

4. Sample dk indices from the set Sj without replacement
based on the computed weights, i.e., P (Nj = j) = ω

(j)
i . If

dk ≤ dj , then take all the rest of the indices.

5. Form a partition of the states whose indices were
obtained in step 4, including state i obtained in step 2.

6. Update Sj and its dimension dj by removing the indices
used to form a partition in steps 4-5.

State dimension Partition size Total number of particles
dx = 100 dk ∈ {5, 10, 25} M ∈ {500, 1500, 2500, 4000, 5000}
dx = 300 dk ∈ {10, 30, 60} M ∈ {10000, 25000, 40000, 65000, 90000}

TABLE II: Conditions under which the MPFs were run.

7. Repeat steps 2 − 6 until all the rest of the states have
been placed in partitions.

Note that if a given state j̃ has been placed in a partition in
a previous iteration, its parameter cij̃ will not be used in the
computation of the weights in step 3 in the following iterations.

V. SIMULATIONS

We ran simulations on synthetic data to obtain some initial
results using the proposed as well as the original partitioning
schemes. For notational convenience, we abbreviate the MPF
which uses random partitioning as RP-MPF, and the MPF
which uses topologically weighted random partitioning as
TWRP-MPF. We consider the following SSM:

xt = Cg(xt−1) + ut,

yt = Hxt + vt,
(9)

where C ∈ Rdx×dx is the coefficient matrix whose ele-
ments cij were generated as cij ∼ U(−2, 2),∀i, j. Addi-
tionally, approximately about 1

3 of them were made 0s to
ensure some degree of separability. The observation matrix
H ∈ Rdx×dx was generated similarly to C, with elements
hij ∼ U(−1, 1),∀i ̸= j, and setting the diagonal elements to
1. The function g(·) can be nonlinear and is assumed known.
In this case, we used the sigmoid function i.e.,

g(s) =
1

1 + e−s
.

The noise parameters were taken to be Gaussian as ut
iid∼

N (0, σ2
xI), and vt

iid∼ N (0, σ2
yI), with σ2

x = 0.1 and σ2
y = 0.1.

The three MPFs were applied on two systems, one of
dimension dx = 100, and the other of dx = 300. For each
case, we tested the performance of the methods with different
partition sizes, and using a range of particles. The details of
the conditions for the simulations can be seen in Table II.
The performance of the MPFs was evaluated using the mean
squared error (MSE) as a metric, defined as

MSE(x̂) =
1

dx

1

T

T∑
t=1

dx∑
j=1

(x̂j,t − xj,t)
2 (10)

and the results were averaged over R = 500 independent runs
for each system.

At first glance of Fig. 1, the most noticeable difference is
that all filters perform significantly better with smaller partition
sizes. This is because a higher number of filters are employed
in tracking, and each filter handles lower dimensional states.
Such results have been demonstrated in previous works [10],
[16]. However, in one run, the partition sizes were kept same
for all three filters, thus the difference in their performance
is not due to partition size. The RP-MPF makes it evident
(see Fig. 1) that the filtering benefits from at least some kind
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(a) dx = 100, dk = 25.
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(b) dx = 100, dk = 10.
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(c) dx = 100, dk = 5.

Fig. 1: Performance of MPFs on a system of dimension dx =
100. The results are averaged over R = 500 independent runs.
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Fig. 2: Performance of MPFs on a system of dimension dx =
300 with partition size dk = 60. The results are averaged over
R = 500 independent runs.

of permutation of the states in partitions. The TWRP-MPF
can be seen as a more principled version of the RP-MPF,
where the random partitioning scheme is informed by the
connectedness between the states. We can see in Fig. 1c for
dk = 5 that there is little to no difference in performance
between the RP-MPF and the TWRP-MPF, however, that is
not the case for the larger partition sizes in Fig. 1a - 1b. This
is thought to be due to the fact that dk = 5 is too small
of a partition size to allow for the effect of the topology to
manifest, and the net effect of the topology-based partitioning
reduces to that of just random partitioning. While having
smaller partition sizes is computationally less expensive, it can
limit the opportunity of state coupling, which in some cases
is more relevant for physical interpretation. Even in that case,
a less obvious remark worth noting is that the MPF requires
more than three times the number of particles to achieve the
same performance as the newly proposed filters. In fact, in
the simulations with dk = 25 in Fig. 1a, the original MPF
with M = 5000 is outperformed by the TWRP-MPF with
M = 500, and the RP-MPF with M = 1500. Similar behavior
was observed in the case of dx = 300. We feature only the
result of dk = 60 in Fig. 2 to preserve space. The difference
in performance is more pronounced as error accumulates with
the increase of state dimensions, thus, such partitioning can
be more useful for very high dimensions.

VI. CONCLUSION

In this paper, we proposed novel state-space partitioning
schemes for improved accuracy of multiple particle filtering.
In particular, we looked at the effects of partitioning the states
purely randomly, and based on the topology of the system. The
simulations show that a multiple particle filter benefits from
permutations in state partitioning, and particularly extracts
more information when the states are randomly partitioned
when influenced by the topology. This, of course, works where
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we assume the topology is known, which is not always the
case. Interesting future work should address finding ways
to jointly learn the topology while tracking states. Further,
reassignment of states every few time steps may be of use
to cut down computational cost. However, some topologies
are time-varying and an extensive study of such systems with
the proposed or improved partitioning schemes can be an
interesting line of research.
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[15] P. M Djurić and M. F Bugallo, “Multiple particle filtering with improved
efficiency and performance,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp.
4110–4114.

[16] P. Closas and M. F Bugallo, “Improving accuracy by iterated multiple
particle filtering,” IEEE Signal Processing Letters, vol. 19, no. 8, pp.
531–534, 2012.

[17] B. Ait-El-Fquih and I. Hoteit, “A variational bayesian multiple particle
filtering scheme for large-dimensional systems,” IEEE Transactions on
Signal Processing, vol. 64, no. 20, pp. 5409–5422, 2016.
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