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Abstract—Appliance load disaggregation (ALD): Disaggregat-
ing the total power demand of an household into power demands
of individual appliances can provide valuable information to
consumers. In this paper, a non-intrusive ALD method based
on Bayesian sequence estimation (BSE) is presented. Given a
sequence of measured aggregated power demands of the house-
hold, the proposed method estimates the maximum probable
state sequence of each appliance in the household by utilizing
the Viterbi framework. In addition, this paper proposes three
importance sampling (IS) methods namely uniform, transition
and weighted transition methods to reduce the complexity of the
proposed BSE based ALD by state reduction. Furthermore, the
proposed method has a backtracing mechanism to smooth the
estimated state sequence based on the future measurements. The
proposed method is compared with the particle filter (PF) based
ALD using two well known real-world data sets. The simulation
results show that the proposed method achieves higher estimation
accuracy than the PF based ALD method depending on the
chosen IS method.

I. INTRODUCTION

Modern smart meters enable the consumers to monitor
fine-grained power demand data of their households in real
time [1]. Disaggregating the overall power demand of an
household into the power demands of individual appliances,
often referred as appliance load disaggregation (ALD) can
enhance the energy aware behavior of the consumer. Several
authors have proposed both intrusive and non-intrusive ALD
methods [2] based on machine learning approaches [3]–[5],
matrix factorization [6], integer programming [7], [8] and
hidden markov model (HMM) and factorized hidden markov
model (FHMM) [9], [10], and so on. In [8] and [9], it is shown
that the HMM-FHMM based ALD methods have been pre-
ferred over other approaches. The HMM-FHMM based ALD
methods utilize the probabilistic appliance models to model
a household as a finite state machine. They can further use
highly scalable particle filters (PF) to estimate the appliance
states based on maximum a-posterior (MAP) criteria [9].

The MAP based ALD method proposed in [9] uses a
relatively efficient reduced state Viterbi algorithm. However,
this method estimates the state of each appliance at a given
time based on the aggregated power demand of the household
at that time. Thus, it does not exploit the information carried
by the future aggregated power demand measurements of the
household. Further, it uses random sampling to achieve state
reduction without considering the appliance behavior or state
transition probabilities.

In this paper, an ALD method based on Bayesian sequence
estimation (BSE) with important sampling (IS) and backtrac-

ing is proposed. Contrary to [9], the proposed method esti-
mates the sequence of appliance states in a given observation
window based on all the aggregated power demand mea-
surements in that observation window. The proposed method
uses the Viterbi algorithm and IS to calculate the maximum
probable state sequence of each appliance by maximizing the
joint probability density function (PDF) of all the appliance
states and aggregated power demand measurements in a given
observation window. The role of IS is to reduce the computa-
tional complexity of the BSE by state reduction thus, resulting
in a reduced state BSE (RBSE) based ALD. This paper
proposes three different IS methods, namely uniform (UIS),
transition (TIS) and weighted transition (WIS) to allow the
proposed RBSE based ALD method to perform state reduction.
The proposed method further has a backtracing mechanism
that requires the estimation process to come backwards and
smooth the estimated state sequence based on the future
measurements. Furthermore, the proposed method is evaluated
using two real world data sets, namely a public data set for
energy disaggregation research (REDD) [11] and an energy
consumption data set of households in Italy and Austria
(GREEND) [12]. For the considered data sets, the proposed
RBSE based ALD method with IS and backtracing can achieve
higher accuracy compared to the PF based ALD method.

The paper is organized as follows, Sec. II describes the
HMM and FHMM based appliance and household models,
respectively. Sec. III describes the BSE based ALD. Sec. IV
describes the proposed RBSE based ALD algorithm along with
the proposed IS methods and backtracing process. Sec. V
evaluates the proposed method based on REDD and GREEND
data sets. Sec. VI presents the conclusions.

II. SYSTEM MODEL

Let us consider that the household consists of N appliances
and that an appliance n, where n = 1, 2, · · · , N is operating
in a state xnk ∈ {sn1 , sn2 , · · · , snSn} at time k. The variable Sn

represents the number of possible states in which the appliance
n can be operated. The behavior of the appliance over time
can be modeled using the morkov model (MM) as shown in
Fig. 1. The MM is characterized by the state transition matrix
An

k of the appliance n at time k. The element ani,j,k, where
1 ≤ i, j ≤ Sn in the state transition matrix An

k represents the
transition probability of the appliance n from state sni to state
snj at time k as

ani,j,k = Pr
(
xnk = snj |xnk−1 = sni

)
≥ 0, (1)
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Fig. 1. The probabilistic appliance model based on the markov model.

where
∑Sn

j=1 a
n
i,j,k = 1 ∀ i, k. The elements ani,j,1 in the initial

state transition matrix An
1 are defined as

ani,j,1 = Pr
(
xn1 = snj |xn0

)
= πn

j ≥ 0, (2)

where xn0 is the initial state of the appliance n.
The power demand Pn

k ∈
{
P (sn1 ), P (s

n
2 ), · · · , P (snSn

)
}

of the appliance n at time k corresponds to the state xnk in
which the appliance n is operated at the time k. The overall
household power demand Pk at time k is the aggregate of the
power demands of N household appliances at time k and it
can be modeled by FHMM. The FHMM models the overall
household power demand as a superposed power demand of N
multiple Markov chains, where each Markov chain represents
an individual appliance. Thus, the measured aggregated power
Pk is given by

Pk =

N∑
n=1

Pn
k + wk, (3)

where the measurement error wk is modeled with an indepen-
dent and identically distributed (IID) Gaussian noise.

III. APPLIANCE LOAD DISAGGREGATION USING
BAYESIAN SEQUENCE ESTIMATION

Let us consider that xk =
[
x1k, x

2
k, · · · , xNk

]T
represents

the operating states of all N appliances (super state of the
household) at time k. Given the aggregated power demands
of an household P1:K = (P1, P2, · · · , PK) in an observation
window, the goal is to estimate the sequence of maximum
probable super states x1:K = (x1, x2, · · · , xK). The estimated
state sequence x̂1:K can be inferred by maximizing the joint
PDF p(x1:K , P1:K) [13] as

x̂1:K = argmax
x1:K

p(x1:K , P1:K). (4)

According to the assumed appliance model in (1) and house-
hold model in (3), the super state xK and the power demand
PK of the household only depend on the super state xK−1 and
xK , respectively. Thus, the joint PDF in (4) can be written as

p(x1:K , P1:K) = p(PK |xK)p(xK |xK−1)p(x1:K−1, P1:K−1),
(5)

where p(PK |xK) and p(xK |xK−1) are the likelihood and state
transition PDFs at time K, respectively. p(x1:K−1, P1:K−1) is
the joint PDF at time K − 1.

The Viterbi based BSE (VBSE) can be used to maximize the
joint PDF as shown in (4). According to the assumed HMM
based appliance model in (1), the household can reach a certain

super state xik at each time k, where i = 1, 2, · · · , S and
k ∈ 1, 2, · · · ,K. The variable S =

∏N
n=1 S

n represents the
total number of possible super states of the household, where
Sn is the number of possible states of the appliance n. The
VBSE computes maximum likelihood (ML) measure αi

k for
each super state xik at each time k. The ML measure αi

k gives
the maximum probability for the household to reach the super
state xik at time k and it can be written as

αi
k = max

x1:k−1

ln p(xk = xik, x1:k−1, P1:k),

= ln p(Pk|xk = xi
k) + max

j

[
ln p(xk = xik|

xk−1 = xjk−1) + ln p(x1:k−1|P1:k−1)
]
,

= ln p(Pk|xk = xik) + max
j

[
ln p(xk = xik|

xk−1 = xjk−1) + αj
k−1

]
,

(6)

where αj
k−1 is the ML measure to reach the state xjk−1 at time

k − 1, where j = 1, 2, · · · , S. The initial ML measure αi
1 at

time k = 1 and for i = 1, 2, · · · , S is defined as

αi
1 = ln p(P1|x1 = xi1) + ln p(x1 = xi1|x0). (7)

Further, the VBSE identifies the path ψi
k that maximizes the

ML measure αi
k and it is given as

ψi
k = argmax

j

[
ln p(xk = xik|xk−1 = xjk−1) + αj

k−1

]
. (8)

In order to optimally estimate the maximum probable state
sequence x̂1:K , the VBSE should calculate the ML measures
αi
k

∣∣S
i=1

∣∣K
k=1

and the corresponding paths ψi
k

∣∣S
i=1

∣∣K
k=1

for all
possible super states at each time k until K. This is refereed
as forward recursion. At end of the forward recursion, the
optimal sequence of super states can be estimated using a
process known as backtracing. Firstly, the estimated super state
x̂K of the household is computed as

x̂K = xiKK where iK = argmax
i

αi
K , (9)

Now, the backtracing process keeps the track of the paths ψi
k

that maximizes ML measures αi
k for each time k ∈ K−1,K−

2, · · · , 1. By applying backtracing, the super state xk at time
k, where k = K − 1,K − 2, · · · , 1 can be estimated as

x̂k = xik
k where ik = ψk+1(ik+1). (10)

The estimated state sequence x̂1:K is the optimal state se-
quence of the household from time 1 to K given the power
demand measurements P1:K . Assuming that the household has
S operating super states, the computational complexity and
the memory requirements of the optimal VBSE method are
in order of O(S2K) and O(2SK), respectively. Hence, in
practice, the implementation of the optimal BSE to solve the
ALD problem could already become computationally intensive
for an household with as many as 10 ON-OFF appliances.
In the next section, a reduced state BSE is proposed which
adopts the Viterbi paradigm as discussed in this section and
IS methods to estimate the appliance states.
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IV. THE REDUCED STATE BAYESIAN SEQUENCE
ESTIMATION FOR APPLIANCE LOAD DISAGGREGATION

In the proposed RBSE method, the number of super states at
which the ML measures αi

k and the corresponding maximizing
paths ψi

k are calculated is restricted to a sub set of super states.
In this paper, a monte-carlo process known as importance
sampling (IS) [14] is used to deduce the subset of super
states at which the ML measures αi

k and the corresponding
maximizing paths ψi

k are calculated.
Let us consider that at time k, a set of particles x(j)1:k−1,

where j = 1, 2, · · · , Np and the corresponding ML measures
α
(j)
k−1 are known. Each of these particles represent a super state

of the household at time k−1. Now, a new set of particles x(i)1:k,
where i = 1, 2, · · · , Np are drawn such that the corresponding
ML measures α(i)

k at time k can be calculated as required by
the VBSE. Each of the particles in the new set x(i)

1:k represent
a super state of the household at time k. Ideally, the particles
x(i)1:k should be drawn from the joint PDF p(x1:k, P1:k) itself or
any other PDF that has the same global maximum and support
space as p(x1:k, P1:k). Direct sampling from p(x1:k, P1:k) is
usually not possible. Hence, an importance density q(x1:k)
is used to draw the samples at time k. The accuracy of the
estimation depends on the selection of the importance density
and the number of particles Np.

Three different IS methods that use three different im-
portance densities are discussed later in the paper. At this
point, let us consider that the new set of particles x(i)1:k, where
i = 1, 2, · · · , Np are drawn from one of these importance
densities q (x1:k). The ML measure α(i)

k at time k gives the
maximum probability for the household to reach the super
state (particle) x(i)

k , where i = 1, 2, · · · , Np. From (6), it can
be written as

α
(i)
k = ln p(Pk|xk = x(i)

k ) + max
j

[
α
(j)
k−1

+ ln p(xk = x(i)
k |xk−1 = x(j)k−1)

]
.

(11)

The path ψ(i)
k that maximizes ML measure α(i)

k is given as

ψ
(i)
k = argmax

j

[
ln p(xk = x(i)k |xk−1 = x(j)

k−1) + α
(j)
k−1

]
,

(12)
where the likelihood probability p(Pk|xk = x(j)k ) can be ob-
tained from (3). The transition probability p(xk = x(i)

k |xk−1 =

x(j)
k−1) can be calculated using the chosen importance density.

A. Importance Sampling

1) Uniform Importance Sampling (UIS): A new set of
samples x(i)

1:k are drawn uniformly among all the possible
super states xjk, where j = 1, 2, · · · , S. Hence, the log of the
transition probability ln p(xk = x(i)k |xk−1 = x(j)

k−1) that is used
to compute the ML variable α(i)

k as shown in (11) becomes

ln p(xk = x(i)k |xk−1 = x(j)
k−1) = ln 1/S. (13)

The UIS does not take the state transition probability
p(xk|xk−1) into account.

2) Transition Importance Sampling (TIS): In this approach,
the new set of particle x(i)1:k at time k are drawn from the state
transition PDF p(xk|xk−1). Since the particles x(j)

1:k−1, where
j = 1, 2, · · · , Np at time k − 1 are known, the new set of
particles x(i)1:k, where i = 1, 2, · · · , Np are drawn as

x(i)
1:k

∣∣∣Np

i=1
∼ p(xk|x(j)k−1)

∣∣∣Np

j=1
. (14)

The TIS can make use of the HMM based appliance modeling
to sample the new set of particles at each time k. Hence, the
log of the transition probability that is used to compute the
ML measure α(i)

k and the maximizing path ψ(i)
k as shown in

(11) and (12), respectively, is calculated as

ln p(xk = x(i)k |xk−1 = x(j)
k−1) =

N∑
n=1

ln ani,j,k. (15)

This approach suffers from the degeneracy in which each
particle x(i)

0:k−1 at time k−1 generates only one particle x(i)
0:k at

time k irrespective of its ML measure α(i)
k−1. Due to the this,

large computational effort is spent on the particles with less
contribution to the estimation of the optimal state sequence.

3) Weighted Importance Sampling (WIS): This approach
partially addresses the degeneracy problem by allowing a
particle x(j)1:k−1 at time k−1 to generate one or more samples at
time k based on its ML measure α(j)

k−1. In the WIS approach,
the ML measure α(j)

k−1 of a sample x(j)1:k−1 is normalized as

α
(j)
k−1 = α

(j)
k−1

/ Np∑
j=1

α
(j)
k−1, (16)

where α
(j)
k−1 is the normalized ML measure of the particle

x(j)1:k−1. Then, each particle x(j)1:k−1, where j = 1, 2, · · · , Np

generates a certain number of particles proportional to the
value α(j)

k−1 using the corresponding state transition probability
p(xk|x(i)k−1) in such a way that total number of new parti-
cles remain Np. Finally, the log of the transition probability
ln p(xk = x(i)k |xk−1 = x(j)

k−1) that is used to compute the ML
variable α(i)

k can be calculated as shown in (15).
In the RBSE approach the ML measures α(i)

k

∣∣Np

i=1

∣∣K
k=1

and
the corresponding maximizing paths ψ(i)

k

∣∣Np

i=1

∣∣K
k=1

are calcu-
lated for all sampled particles until time K. Then backtracing
is used to achieve the estimated state sequence x̂1:K as de-
scribed in the previous section. In general, the ALD algorithms
run for a very long time (in the order of days), thus the
RBSE based ALD with backtracing can cause high latency
in estimating the state sequence. To reduce the latency to a
required level, a truncated backtracing is proposed.

B. Truncated Backtracing

In this process, a latency factor L is introduced and
backtracing is applied after every L power demand mea-
surements. Let us consider that the total set of power
demand measurements P1:K is divided into sub-blocks{
P1:L, PL+1:2L, · · · , P(K/L−1)L+1:K

}
of equal length L.
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TABLE I
THE ACC OF THE PROPOSED RBSE BASED ALD WITH AND WITHOUT BACKTRACING FOR THE HOUSE 0 OF THE GREEND AND HOUSE 0 OF THE

REDD DATA SETS IN COMPARISON TO PF BASED ALD METHOD. THE LATENCY FACTOR L IS CONSIDERED TO BE 1200. THE Np IS 300.

Data set Appliance no. of RBSE-ALD RBSE-ALD PF-ALD
states no backtracing backtracing

UIS TIS WIS UIS TIS WIS

Coffee machine 3 0.5735 0.6431 0.6576 0.6341 0.7932 0.8021 0.6391
Wash machine 4 0.7245 0.8546 0.8622 0.7242 0.9235 0.9634 0.8401

GREEND Fridge 4 0.7323 0.8438 0.8460 0.7420 0.8845 0.8712 0.8278
Dishwasher 3 0.8134 0.8536 0.8744 0.8203 0.8904 0.9132 0.8131
Television 2 0.8451 0.8640 0.8715 0.8112 0.8833 0.9589 0.8536

Household - 288 0.7377 0.8117 0.8224 0.7463 0.8749 0.9017 0.7951

Oven 3 0.7532 0.9324 0.9342 0.7832 0.9532 0.9534 0.9321
Refrigerator 3 0.6234 0.7825 0.8023 0.7134 0.8412 0.8631 0.7843

REDD Dishwasher 4 0.5934 0.7722 0.7823 0.6345 0.8334 0.8505 0.7324
Kitchen Outlet 2 0.8234 0.9374 0.9452 0.8134 0.9453 0.9464 0.9342

Microwave 3 0.7134 0.8134 0.8232 0.7435 0.8634 0.8918 0.7924

Household - 216 0.7013 0.8475 0.8574 0.7376 0.8877 0.9010 0.8350

When k is equal to mL, where m = 1, 2, · · ·K/L, the state
sequence x̂(m−1)L+1:mL is estimated. By applying truncated
backtracing, firstly, the estimated super state x̂mL, where
m = 1, 2, · · ·K/L of the household is computed as

x̂mL = ximL
mL where imL = argmax

i

{
α
(i)
mL

}
. (17)

Now, the super states xk at time k, where k = mL−1,mL−
2, · · · ,mL− L+ 1 can be estimated as

x̂k = xikk where ik = ψ
(ik+1)
k+1 . (18)

The estimated super state x̂mL is then used as the prior state for
the estimation of the state sequence xmL+1:(m+1)L. An higher
estimation accuracy can be achieved by either increasing the
latency factor L or the number of particles Np which also
increases the latency of the estimation and/or memory and
computational requirements. For a chosen L and Np, the
memory requirements and computational complexity are in
order of O(2Np · L) and O(N2

p · L), respectively.

V. RESULTS

In this section, the evaluation of the proposed RBSE based
ALD is presented in comparison to the PF based ALD [9].
Two different real world data sets REDD and GREEND are
used to evaluate the performance of the proposed method. For
our evaluations, we used the data from House 1 in REDD
and House 0 in GREEND data sets. The metrics accuracy and
root mean square error (RMSE) are used for the performance
evaluation. The accuracy is calculated based on true detection
(TD) (number of times the state of an appliance is correctly
detected) and false detection (FD) (number of times the state
of an appliance is wrongly detected) as

ACC = TD/ (TD + FD) ∈ [0, 1]. (19)

The normalized RMSE is formulated as

RMSE =

√√√√ 1

K

K∑
k=1

(
Pk − P̂k

)2/
(Pmax − Pmin) , (20)

where Pk and P̂k are the true power demand and the estimated
power demand of the household at time k, respectively. Pmax

and Pmin are the maximum and the minimum aggregated
power demand of the household in the selected window of
time, respectively. K is the duration of the estimation process.
In order to be statistically reliable, the accuracy ACC and
RMSE are averaged over 100 simulation runs.

The considered data sets REDD and GREEND provide
the sub-metered power demands of the individual appliances.
The total power demand of the household is determined
by aggregating the power demands of the chosen individual
appliances. The proposed RBSE and PF based ALD methods
require the state transition matrix An

k for each appliance n in
order to estimate the state of the appliances. In this paper, the
transition matrix An

k for each device n is determined by using
30% of the power demand measurements. The Baum-Welch
algorithm [15] is used to construct the state transition matrices
An

k from the training data. Moreover, the state transition
matrix An

k for each device n is assumed to be constant for
the entire duration of the estimation process. Based on the
power demand information, each appliance is modeled as
either ON/OFF appliance or multi-state appliances, where we
give the algorithm the possibility to adjust its power demand
for each state. Furthermore, the Baum-Welch algorithm also
calculates an observation matrix Bn

k which can be used to
calculate the estimated power P̂n

k of each device n based on
the estimated state x̂nk . Thus, the estimated power demand P̂k

of the household can be calculated as an aggregate of the
estimated power P̂n

k of individual appliances.

Table I gives the accuracy ACC of the proposed RBSE
based ALD method with and without backtracing in compar-
ison with the PF based ALD. For this evaluation, the number
of particles Np and latency factor L are considered to be
300 and 1200, respectively. When backtracing is not applied,
the proposed method estimates the appliance state at a given
time based on the power demand measurement at that time
similar to the PF-MAP based ALD proposed in [15]. From
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TABLE II
THE RMSE OF THE PROPOSED RBSE BASED ALD WITH BACKTRACING

FOR THE HOUSE 0 OF THE GREEND DATA SET.

No. of particles Np RBSE with backtracing
UIS TIS WIS

Np = 100 0.1732 0.1256 0.1221
Np = 300 0.1627 0.1145 0.1086

Time in hours
6 10 14 18 22 2 6

P
ow

er
 in

 W

0

500

1000

1500

2000
Gruond truth
RBSE+WIS N

p
=300

RBSE+WIS N
p
 =100

Fig. 2. A snap shot of the ground truth and estimated total power demands of
the Household 0 of the GREEND data set. The estimation method is RBSE
with backtracing and WIS. The number of particles Np are considered to be
100 and 300. The latency factor L is 1200.

this table, it is illustrated that the accuracy of the proposed
RBSE based ALD method increases when the backtracing
is applied irrespective of the IS method. In general, it can
also understood that the IS methods TIS and WIS are more
accurate than the UIS method due to their ability use the state
transition probability to sample the new particles instead of
random sampling. The proposed RBSE based ALD method
with UIS is also less accurate than the PF based ALD due to
the same reason. On the other hand, the proposed RBSE base
ALD method with TIS and WIS are more accurate than the
PF based ALD method.

Table II gives the RMSE of the proposed RBSE based
ALD with backtracing for the House 0 of the GREEND
data set for all three IS methods. For this evaluation, two
different number of particles Np 100 and 300 are considered.
The latency factor L is considered to be 1200. The RMSE
mentioned in the table II corresponds to the entire household
instead of individual appliances. From table II, it can be
understood that the proposed RBSE method with WIS has
better RMSE compared to that of the UIS and TIS methods.
Further, Fig. 2 illustrates a snap shot of the ground truth and
the estimated total power demands of the Household 0 of
the GREEND data set for a chosen 24 hour period and in a
simulation run using RBSE based ALD with backtracing and
WIS. This figure shows that the RMSE of the proposed method
decreases as the number of particles Np increases. Moreover,
the proposed methods has better estimation accuracy when the
power demand has less fluctuations.

VI. CONCLUSIONS

In this paper, we have proposed a reduced state Bayesian
sequence estimation (RBSE) approach to perform appliance

load disaggregation (ALD). The proposed method uses the
principles of the importance sampling (IS) and the Viterbi
algorithm to estimate the maximum probable state sequence of
the appliances given the corresponding sequence of aggregated
power demand measurements of the household. Three different
IS methods: uniform, transition and weighted transition have
been proposed. Unlike the particle filter (PF) based ALD,
the proposed RBSE method performs backtracing to come
backwards and smooth the estimated state sequence based
on the future measurements. To further reduce the mem-
ory requirements and latency of the disaggregation process,
a truncated backtracing has been proposed. The proposed
method has been evaluated using REDD and GREEND in
comparison with the PF based ALD. For the considered data
sets, the proposed RBSE based ALD method can achieve
higher accuracy compared to the PF based ALD method.
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