
Operator-Norm-Based Variable-Wise Diagonal
Preconditioning for Automatic Stepsize Selection of

A Primal-Dual Splitting Algorithm
1st Kazuki Naganuma

School of Computing, Department of Computer Science
Tokyo Institute of Technology

Kanagawa, Japan
naganuma.k.aa@m.titech.ac.jp

2nd Shunsuke Ono
School of Computing, Department of Computer Science

Tokyo Institute of Technology
Kanagawa, Japan
ono@c.titech.ac.jp

Abstract—We propose a diagonal preconditioning method for
automatically selecting the step sizes of a primal-dual splitting
method (PDS). The conventional preconditioning method for PDS
has several limitations, such as the need to directly access all
the entries of the matrices representing the linear operators in
the target optimization problem, and the possibility that the
proximity operator cannot be solved analytically due to the
element-wise preconditioning. In this paper, we establish operator
norm-based variable-wise diagonal preconditioning (ON-VW) to
resolve these issues. ON-VW has two features that are preferred
in real applications. First, the preconditioners constructed by ON-
VW are defined using only (an upper bound of) the operator
norm of the linear operators, which eliminates the need for
their explicit matrix representations. Furthermore, the stepsizes
automatically selected by our preconditioners are variable-wise,
which allows us to keep the proximity operator computable.
We also prove that our preconditioners satisfy the convergence
condition of PDS and demonstrate its effectiveness through its
application to denoising of hyperspectral images.

Index Terms—Primal-dual splitting method (PDS), diagonal
preconditioning, automatic stepsize selection, signal estimation

I. INTRODUCTION

Many signal estimation problems, such as denoising, in-
terpolation, decomposition and reconstruction, have been re-
solved by casting them as convex optimization problems [1],
[2] of the form:

min
x1,...,xN ,
y1,...,yM

∑N

i=1
fi(xi) +

∑M

j=1
gj (yj)

s.t. y1 =
∑N

i=1 L1,i(xi), . . . ,yM =
∑N

i=1 LM,i(xi), (1)

where fi : Rni → (−∞,+∞] and gj : Rmj → (−∞,+∞]
are proximable1proper lower semicontinuous convex func-
tions, and Lj,i : Rni → Rmj are linear operators (∀i =
1, . . . , N and ∀j = 1, . . . ,M , ). The variables x1, . . . ,xN

represent estimated signals or components, and y1, . . . ,yM

are auxiliary variables for splitting.

This work was supported in part by JST CREST under Grant JPMJCR1662
and JPMJCR1666, in part by JST PRESTO under Grant JPMJPR21C4, and in
part by JSPS KAKENHI under Grant 20H02145, 19H04135 and 18H05413.

1If an efficient computation of the proximity operator (see. Eq. (3)) of f
is available, we call f proximable.

As a method for solving Prob. (1), a primal-dual splitting
method (PDS) [3] has attracted attention due to its simple
implementation without operator inversions2. The theoretical
convergence of PDS is established in a primal-dual space
equipped with a skewed metric, which is determined by the
linear operators involved in the optimization problem and
stepsizes (see [4], [6] for details). The convergence speed
of PDS thus strongly depends both on the problem structure
and the stepsize selection, leading to a problem-wise manual
adjustment of the stepsizes for fast convergence.

To avoid such troublesome stepsize adjustment and improve
the convergence, a preconditioned version of PDS (P-PDS)
has been proposed for automatic stepsize selection based on
certain diagonal preconditioners [7]. The entries of the diago-
nal preconditioners, corresponding to element-wise stepsizes,
consist of the row/column absolute sum of the entries of the
explicit matrices representing the Lj,i, and thus the resulting
stepsizes can be different for each element in one variable.
Such element-wise preconditioning has been proposed for
various proximal splitting methods [8]–[10].

Although this preconditioning method is powerful and use-
ful, there exist two limitations that are considerable in real
applications. First, the method is difficult to apply in the
case where (some of) the linear operators Lj,i in Prob. (1)
are not implemented as explicit matrices because it requires
to access the whole entries of the matrices to construct the
preconditioners. We often encounter such situations especially
in imaging applications, where the linear operators are imple-
mented not as explicit matrices but as procedures that compute
forward and adjoint operations in an efficient manner, e.g.,
difference operators [11], [12] and frame transformations [13]–
[15]. Second, some proximable functions are not completely
separable for each element of the input variable, e.g., mixed
norms and the indicator functions of norm balls [16]. For
such functions, element-wise preconditioning might make the
functions non-proximable.

2This algorithm has been generalized by Condat [4] and Vu [5], where
smooth convex functions are optimized by using their Lipschitzian gradients.
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For addressing the above issues, this paper proposes an
operator norm-based variable-wise diagonal preconditioning
(ON-VW) method. Our method has two features preferred
in a number of real applications. First, our preconditioners
can be computed from (upper bounds of) the operator norms
of the linear operators Lj,i, meaning that our method does
not need their explicit matrix representations. This is because
(upper bounds of) the operator norms are often known or
can be estimated without matrix implementation for typical
linear operators used in signal estimation, including the ones
mentioned above. Second, since the ith set of linear operators
L1,i, . . . ,LM,i exactly corresponds to the ith variable xi, the
entries of the diagonal preconditioner for the ith variable
obtained by our method take the same value, resulting in
variable-wise stepsizes. This maintains the proximablity of the
functions in the target optimization problem. We also prove
that the sequence generated by P-PDS with ON-VW converges
the solution of Prob. (1), and demonstrate the effectiveness of
ON-VW through a hyperspectral image denoising problem.

II. PRELIMINARIES

A. Proximity Operator

Let f : RN → (−∞,∞] be a proximable proper lower
semi-continuous convex function and G ∈ RN×N be a
symmetric and positive definite matrix. Then, the skewed
proximity operator is defined as

proxG,f (x) := argmin
y

1

2
⟨x− y,G(x− y)⟩+ f(y), (2)

where ⟨·, ·⟩ is the Euclidean inner product. If G is a positive
scalar matrix, i.e., G = αI (α > 0), the skewed proximity
operator is identical to the standard proximity operator:

proxαI,f (x) = prox 1
α f (x) = argmin

y

1

2
∥x− y∥22 +

1

α
f(y).

(3)
The standard proximity operators of some popular convex
functions, such as the mixed ℓ1,2-norm, have analytic so-
lutions, but their computation is not completely separable
element by element. In such cases, even if the preconditioner
is diagonal (with different entries), the computation of the
skewed proximity operator becomes difficult.

B. Preconditioned Version of PDS

P-PDS [7] computes the solution of Prob. (1) by Algo-
rithm 1. The function f∗ is the Fenchel–Rockafellar conjugate
function3 of f , L∗ is the adjoint operator of L, and Γ1,i

and Γ2,j are symmetric and positive definite matricies called
preconditioners.

Here, we introduce the convergence property of P-PDS.

3The Fenchel–Rockafellar conjugate function of f is defined as

f∗(x) := max
y

⟨x,y⟩+ f(y).

Algorithm 1 P-PDS [7] for solving Prob. (1)

Input: x
(0)
1 , . . . , x

(0)
N , y

(0)
1 , . . . , y

(0)
M

Γ1,1, . . . ,Γ1,N ,Γ2,1, . . . ,Γ2,M

Output: x
(k)
1 , . . . , x

(k)
N , y

(k)
1 , . . . , y

(k)
M

1: Initialize n = 0;
2: while A stopping criterion is not satisfied do
3: for i = 1, · · · , N do
4: x′

i ←
∑M

j=1 L
∗
j,i(y

(k)
j )

5: x
(k+1)
i ← proxΓ−1

1,i ,fi
(x(k) − Γ1,ix

′
i);

6: end for
7: for j = 1, · · · ,M do
8: y′

i ←
∑N

j=1 Lj,i(2x
(k+1)
i − x

(k)
i )

9: y
(k+1)
j ← proxΓ−1

2,j ,g
∗
j
(y

(k)
j + Γ2,jy

′
i)

10: end for
11: k ← k + 1;
12: end while

Theorem II.1. [7, Theorem 1] Let Γ1 =
diag(Γ1,1, . . . ,Γ1,N ) and Γ2 = diag(Γ2,1, . . . ,Γ2,M )
are symmetric and positive definite matrices satisfying∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op
≤ 1, (4)

where A ◦ B is the composition of A and B, ∥ · ∥op is the
operator norm and L is the linear operator that includes Lj,i:

L :=


L1,1 L1,2 · · · L1,N

L2,1 L2,2 · · · L2,N

...
...

. . .
...

LM,1 LM,2 · · · LM,N

 . (5)

Then, the sequence (x
(n)
1 , . . . ,x

(n)
N ,y

(n)
1 , . . . ,y

(n)
M ) gener-

ated by Algorithm 1 converges to an optimal solution
(x∗

1, . . . ,x
∗
N ,y∗

1, . . . , y
∗
M ) of Prob. (1).

The authors of [7] present a concrete method for construct-
ing the preconditioners as follows. Each Γ1,i (and Γ2,j) is a
diagonal matrix consisting of the row/column absolute sum
of the entries of the matrix representing Lj,i (see Lemma 2
in [7]). This means that the diagonal entries of one Γ1,i (and
Γ2,j) may take different values, and the stepsizes of P-PDS
will be different for each element for one variable in (1).

The standard PDS can be recovered by setting the precon-
ditioners as Γ1,1 = · · · = Γ1,N = γ1I and Γ2,1 = · · · =
Γ2,M = γ2I for positive scalars γ1 and γ2 that satisfy (4),
that is,

γ1γ2∥L∥op ≤ 1. (6)

III. PROPOSED OPRATOR-NORM-BASED VARIABLE-WISE
DIAGONAL PRECONDITIONING (ON-VW)

Here we propose a novel diagonal preconditioning method,
ON-VW, for P-PDS. Specifically, ON-VW constructs precon-
ditioners given by

Γ1,i =
1∑M

j=1 γ
2
j,i

I, Γ2,j =
1

N
I, (7)
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(a) (b) (c)
Fig. 1. The comparison of PDS stepsizes (19), R/C-AS-EW [7], and ON-VW (Ours). (a): NRMSE versus iteration. (b): RES versus iteration. (c): PSNR
versus iteration. Note that applying P-PDS with R/C-AS-EW (yellow dotted line) to Prob. (15) is not practical in terms of implementation. (the linear operators
Dv , Dh, and Dh are not usually implemented as explicit matrices)

where γj,i (∀i = 1, . . . , N and ∀j = 1, . . . ,M ) are some
upper bound of the operator norm of Lj,i, i.e.,

γj,i ∈ [∥Lj,i∥op,∞). (8)

Clearly, our preconditioners can be constructed by only using
(upper bounds of) the operator norms of the linear operators
Lj,i, implying that ON-VW does not require to directly access
the entires of the explicit matrices representing Lj,i as long as
some γi,j are available. In addition, the diagonal entries of one
Γ1,i take the same value (Γ2,j as well), i.e., our preconditioners
are in variable-wise, which does not violate proximability of
the functions in (1). For the preconditioners defined in (7), the
following theorem holds.

Theorem III.1. If the preconditioners are set as Eq. (7), then
the inequality in (4) is satisfied.

Proof. Since Γ1 and Γ2 are diagonal, their powers of one half
are

Γ
1
2
1 = diag(Γ

1
2
1,1, . . . ,Γ

1
2

1,N ),

Γ
1
2
2 = diag(Γ

1
2
2,1 . . . ,Γ

1
2

2,M ). (9)

By matrix multiplication and Eq. (9), we have

Γ
1
2
2 ◦ L ◦ Γ

1
2
1 = [Γ

1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,i ],

{
i = 1, . . . , N,

j = 1, . . . ,M.
(10)

Using the inequality of the operator norm of the block ma-
trix [17] and Eq. (7), we obtain∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op
≤

N∑
i=1

M∑
j=1

∥∥∥Γ 1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,i

∥∥∥2
op

=

N∑
i=1

1

N

∑M
j=1 ∥Lj,i∥2op∑M

j=1 γ
2
j,i

. (11)

By using (8), it is satisfied that
∑M

j=1 ∥Lj,i∥2op ≤
∑M

j=1 γ
2
j,i

for any i = 1, . . . , N and j = 1, . . . ,M . Applying this
inequality to Eq. (11), we obtain∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op
≤

N∑
i=1

1

N
= 1. (12)

□

Theorem III.1 asserts that the preconditioners defined in (7)
satisfy the convergence condition in (4) of Algorithm 1. There-
fore, Algorithm 1 with our preconditioners in (7) generates
sequences that converge an optimal solution of Prob. (1). Here,
it is better to set the smallest possible values to γj,i in (7) since
the convergence is faster as the stepsize is larger. Therefore,
γj,i is determined in the following manner.

• If the operator norm ∥Lj,i∥op is known, we set γj,i to
∥Lj,i∥op.

• If ∥Lj,i∥op is unknown, we set γj,i to an upper bound
of ∥Lj,i∥op.

• If the linear operator is the composition function of two
linear operators A and B whose operator norms (or their
upper bounds) are known (∥A∥op ≤ αA, ∥B∥op ≤ αB),
we set γj,i to αAαB.4

IV. APPLICATION TO HYPERSPECTRAL IMAGE DENOISING

In this section, we apply the proposed ON-VW to a hy-
perspectral image denoising problem with the spatio-spectral
total variation regularization (SSTV) [18], which has attracted
attention as hyperspectral image regularization [19]–[22].

A. Problem Formulation

Consider that an observed hyperspectral image (of size n1×
n2 × n3) v ∈ Rn1n2n3 is modeled by

v = ū+ s̄+ n, (13)

where ū, s̄, and n are the true hyperspectral image of interest,
sparsely distributed noise such as outliers, and random noise,
respectively. Based on this observation model, the SSTV
regularized-denoising problem is formulated as a convex op-
timization problem with the following form:

min
u,s
∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 + λ∥s∥1

s.t. u+ s ∈ B(v,ε), (14)

4It is satisfied that ∥A ◦B∥op ≤ ∥A∥op∥B∥op by the submultiplicity of
the operator norm.
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(a) (b) (c) PSNR=31.48 [dB] (d) PSNR=33.97 [dB] (e) PSNR=33.93 [dB]
Fig. 2. Denoising results. (a): Groundtruth. (b): Observed image. (c): Image estimated by PDS with adjusted stepsizes (γ1 = 0.01). (d): Image estimated by
P-PDS with R/C-AS-EW [7]. (e): Image estimated by P-PDS with ON-VW (Ours).

where Dv , Dh, and Db are the vertical, horizontal, and spectral
difference operators, respectively. Here, ∥ · ∥1 is the ℓ1 norm,
and B(v,ε) is the ℓ2 norm ball that is defined as

B(v,ε) := {x ∈ Rn1n2n3 |∥v − x∥2 ≤ ε} . (15)

The terms ∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 is the SSTV
regularization. The positive value λ is a balancing parameter
between the SSTV regularization and the sparse noise term.
The hard constraint guarantees the ℓ2 data fidelity to v with
the radius ε.5

By using the indicator function6 of B(v,ε), Prob. (14) is
reduced to Prob. (1) through the following reformulation:

min
u,s,

y1,y2,y3

λ∥s∥1 + ∥y1∥1 + ∥y2∥1 + ιBv,ε
(y3)

s.t. y1 = Dv(Db(u)),y2 = Dh(Db(u)),y3 = u+ s. (16)

By applying Algorithm 1 to Prob. (16), we can compute
the solution of Prob. (14). Here, since it is satisfied that
∥Dv ◦ Db∥op ≤ 4, ∥Dh ◦ Db∥op ≤ 4 7, and ∥I∥op = 1,
the preconditioners by ON-VW are derived as follows:

Γ1,1 =
1

42 + 42 + 12
I =

1

33
I,Γ1,2 =

1

12
I = I,

Γ2,1 = Γ2,2 = Γ2,3 =
1

3
I. (17)

B. Experimental Results and Discussion

We conducted hyperspectral image denoising experiments
based on Prob. (14) to illustrate the effectiveness of our ON-
VW. Specifically, we compare the standard PDS with various
stepsizes, P-PDS with the preconditioners proposed in [7], and
P-PDS with ours (ON-VW) in solving Prob. (14).

5The original SSTV-regularized denoising formulation proposed in [18] in-
corporates an ℓ2 data-fidelity term as a part of the objective function, whereas
the formulation in (14) imposes data fidelity as an ℓ2-ball constraint. These
two formulations are essentially the same with appropriate hyperparameters,
but constrained formulation like (14) is preferred in experimental comparison
and real applications because it facilitates hyperparameter settings, as has been
addressed in [6], [23]–[25].

6For a given nonempty closed convex set C, the indicator function of C is
defined by ιC(X ) := 0, if X ∈ C; ∞, otherwise.

7These are derived by ∥Dv∥ ≤ 2, ∥Dh∥ ≤ 2, ∥Db∥ ≤ 2 [26], and the
submultiplicity of the operator norm.

For the standard PDS, the stepsizes γ1 and γ2 were set as
follows. Using the inequality of the operator norm of the block
matrix [17], we have∥∥∥∥∥∥

Dv ◦Db O
Dh ◦Db O

I I

∥∥∥∥∥∥
2

op

≤
∥Dv ◦Db∥2op + ∥Dh ◦Db∥2op
+2∥I∥2op

≤42 + 42 + 2× 12 = 34, (18)

where O is the zero operator. Therefore, the following positive
values satisfy the inequality in (6):

γ1 ∈ (0,∞), γ2 =
1

34γ1
. (19)

We also derived the preconditioners proposed in [7], which
we call Row/Columun Absolute Sum-based Element-Wise
Preconditioning (R/C-AS-EW), for (16). Let us remark that
since Dv , Dh, and Db in (16) are not usually implemented as
explicit matrices, applying R/C-AS-EW to (16) is not practical
in real applications. Let x ∈ Rn1n2n3 be a vectorized cube data
and [x]i1,i2,i3 the value of x of the location (i1, i2, i3). Then
the preconditioners were

Γ1,1 = diag(g), I,Γ1,2 = I,

Γ2,1 = Γ2,2 = Γ2,3 =
1

2
I. (20)

Here, g ∈ Rn1n2n3 are defined as

[g]i1,i2,i3 =



1
9 , if i1 ∈ I1 and i2 ∈ I2 and i3 ∈ I3,
1
3 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ E3,

1
4 , if i3 ∈ E3 and

{
(i1 ∈ E1 and i2 ∈ I2)

or (i1 ∈ I1 and i2 ∈ E2),
1
5 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ I3,
1
7 , otherwise,

(21)
where Im and Em (m = 1, 2, 3) are {2, . . . , nm − 1} and
{1, nm}, respectively.

As the groundtruth hyperspectral data, we used Moffett
Field [27] of size 120 × 120 × 176. The observed data was
generated by adding white Gaussian noise with the standard
deviation σ = 0.05 and salt and pepper noise with the
percentage 10%. The parameters λ and ε were set to 0.1 and
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∥n∥2, respectively. To check the convergence of PDS and P-
PDS, we use the following RMSE criterion:

RMSE(u(n), s(n)) :=

√
∥u(n) − u∗∥22 + ∥s(n) − s∗∥22

n1n2n3
, (22)

and the residual of the function values (RES):

RES(u(n), s(n))

:= |(∥Dv(Db(u
(n)))∥1 + ∥Dh(Db(u

(n)))∥1 + λ∥s(n)∥1)
− (∥Dv(Db(u

∗))∥1 + ∥Dh(Db(u
∗))∥1 + λ∥s∗∥1)|, (23)

where u∗ and s∗ are pseudo oracle solutions that were
computed in advance by PDS with 1,000,000 iterations. For
the quantitative evaluation of image qualities, we used peak
signal to noise ratio (PSNR):

PSNR(u(n)) :=
1

n3

n3∑
b=1

10 log10
n1n2

∥ūb − u
(n)
b ∥22

, (24)

where ub is the bth band of u.
Fig. 1 plots the iteration versus NRMSE and RES, respec-

tively. In terms of the convergence, PDSs with γ1 = 1 and
γ1 = 0.001 are very slow, and PDS with γ1 = 0.01 and P-
PDSs with R/C-AS-EW and ON-VW are almost the same.
PDS with γ1 = 0.1 is the fastest in NRMSE, but is equal
to ON-VW in RES. The PSNR values for PDSs γ1 = 0.1,
γ1 = 0.01, R/C-AS-EW, and ON-VW are similar. The PSNR
value for PDSs with γ1 = 1 is high, but the sequence of
variables do not converge, and the PSNR value decreases
to around 33 [dB] as they converge. Although improving
convergence is not the expected advantages of ON-VW, these
observations imply that ON-VW performs as well as the
standard PDS with hand-optimized stepsizes and R/C-AS-
EW. Fig. 2 shows the denoising results and the PSNR values
[dB] obtained by the standard PDS with γ1 = 0.01, R/C-
AS-EW, and ON-VW, where the stopping criterion is set to
NRMSE(u(n), s(n)) ≤ 10−5. We can see that all results are
equivalent in terms of the PSNR and the visual qualities.

V. CONCLUSION

We have proposed ON-VW, which automatically and easily
adjusts the stepsizes in a variable-wise manner when the
target optimization problem incorporates linear operators not
represented as explicit matrices. We also proved the conver-
gence of P-PDS with our preconditioners. An application of
our method to hyperspectral image denoising was provided
with experimental comparison, where we showed that ON-
VW achieved the same convergence speed as the standard PDS
with hand-optimized stepsizes and R/C-AS-EW.
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