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Abstract—This paper studies quantile regression with non-
convex and non-smooth sparse-penalties, such as minimax con-
cave penalty (MCP) and smoothly clipped absolute deviation
(SCAD). Although iterative coordinate descent and local linear
approximation techniques can solve quantile regression problem,
convergence is slow for MCP and SCAD penalties. However,
alternating direction method of multipliers (ADMM) can be
exploited to enhance the convergence speed. Hence, this paper
proposes a new ADMM algorithm with an increasing penalty
parameter, called IAD, to handle sparse-penalized quantile re-
gression. We first investigate the convergence of the proposed
algorithm and establish the conditions for convergence. Then,
we present numerical results to demonstrate the efficacy of the
proposed algorithm. Our results show that the proposed IAD
algorithm can handle sparse-penalized quantile regression more
effectively than the state-of-the-art methods.

Index Terms—Quantile regression, non-smooth and non-
convex penalties, ADMM, sparse learning.

I. INTRODUCTION

Most regression algorithms aim to estimate the conditional

mean of a response variable associated with a set of observa-

tions [1]. However, mean-based regression is sensitive to out-

liers and cannot relate the response variable to another point,

or range, of the conditional distribution, e.g., the median or

a certain percentile. Alternatively, quantile regression, which

provides more comprehensive regression relationships based

on quantiles, can be used in such situations [2]. Consequently,

it has been found useful in various applications, such as

predicting regional wind power [3], estimating uncertainty in

electricity smart meter data [4], and forecasting load in smart

grids [5].

Real-world applications, such as quantitative traits in genetic

[6], and gene selection for microarray gene expression [7],

require estimation of models that tend to be sparse. By using

the a priori information on sparsity, one can achieve better

results compared to the conventional quantile regression meth-

ods. Hence, sparse-penalized quantile regression has attracted

substantial research interest [8], [9]. Quantile regression with

l1-penalty performs well when estimating highly sparse mod-

els but suffers when estimating moderately- or non-sparse

models as the l1-penalty uniformly shrinks all coefficients

of the model toward zero. Therefore, l1-penalized quantile

regression offer poor performance and bias as the model

sparsity decreases. To overcome this problem, we require a
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sparse penalty that can distinguish between zero and non-zero

coefficients of the model. Minimax concave penalty (MCP)

[10] and smoothly clipped absolute deviation (SCAD) [11]

can accomplish these requirements. MCP and SCAD penalties

shrink the model coefficients selectively towards zero, i.e., the

shrinkage is limited to zero coefficients. Despite encouraging

sparse solutions, these penalties alleviate the bias effect of the

l1-penalty.

Conventionally, linear programming [12], [13] and sub-

gradient methods [14] have been exploited to solve l1-

penalized quantile regression. However, these algorithms can

not be employed when the penalty functions are non-convex.

For solving folded concave penalized regression, a general

framework based on local linear approximation (LLA) al-

gorithm was proposed in [15]. For a similar problem setup,

iterative coordinate descent algorithm (QICD) was proposed

and its convergence was established in [16]. However, the

aforementioned approaches are computationally intensive and

have a slow convergence rate.

To ease the computational burden associated with the

sparse-penalized quantile regression, two algorithms based on

alternating direction method of multiplier (ADMM), namely,

sparse coordinate descent ADMM (scdADMM) and proximal

ADMM (pADMM), have been proposed in [17]. The non-

convex penalties were addressed through the LLA framework.

A similar framework was also used to deal with non-convex

penalties in sparse-penalized composite quantile regression

[18]. Since LLA is an iterative method, approaches in [17],

[18] exhibit slow convergence. On the other hand, recent

works have studied ADMM-based non-convex optimization

[19]–[22], but they require that the objective function sat-

isfy Lipschitz differentiability conditions. Thus, ADMM-based

optimization methods still need to be improved to work

effectively in non-smooth and non-convex settings without

assuming Lipschitz differentiability.

In this work, we propose an ADMM based algorithm with

time-increasing penalty parameters (IAD) to solve the quantile

regression problem with non-convex and non-smooth sparse

penalties such as MCP and SCAD. With a time increasing

ADMM penalty parameter, we show that the accumulation of

ascent changes in the augmented Lagrangian from the dual

update step and ADMM penalty parameter update step can

be capped by a constant value. This enables to prove that the

convergence can be guaranteed. Furthermore, we validate our
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theoretical claims through numerical simulations. Simulation

results demonstrate that the proposed algorithm exhibits better

accuracy than state-of-the-art methods such as QICD [16] and

the LLA framework with scdADMM (LSCD) or pADMM

(LPA) [17].

Mathematical Notations: Bold letters a and A are used to

represent vectors and matrices respectively. The transpose of

A is denoted as AT. The jth column of a matrix A is denoted

as A:,j , and the jth element of a vector x is denoted as xj .

In addition, we let A<sx<s :=
∑

i<s A:,ixi and, in a similar

fashion, A>sx>s :=
∑

i>s A:,ixi. Moreover, for a function

h : R
n → R and penalty parameter γ > 0, the proximal

function is defined as: Proxh(w; γ) = argminx
{

h(x) +
1
2γ ‖x−w‖2

}

. Furthermore, for a scalar variable u, and penalty

parameter α, Shrink(u, α) = u
|u| max{0, |u| − α}. Finally,

∂f(u) represents the sub-gradient of f(.) at u.

II. SPARSE QUANTILE REGRESSION

For a scalar random variable Y and a P × 1 vector of

covariates χ, let us consider FY (y|x) = P (Y ≤ y|χ =
x) as the conditional cumulative distribution function and

QY (τ |x) = inf{y : FY (y|x) ≥ τ} as the τ th conditional

quantile for τ ∈ (0, 1). The linear quantile regression model

relates QY (τ |x) and x ∈ R
P as [23]

QY (τ |x) = xTβτ , (1)

where βτ ∈ R
P is the regression model parameters, which

must be estimated. Given the data pairs {xi, yi}ni=1 and a

specific value of τ , the unknown model parameter can be

estimated by solving the following optimization problem [23]:

ŵ = argmin
w

1

n

n
∑

i=1

ρτ (yi − xT
iw), (2)

where w = βτ , and ρτ (u) =
1
2 (‖u‖1 + (2τ − 1)1Tu) which

is also known as check loss function.

By penalizing the quantile regression loss function appropri-

ately, one can take advantage of a priori information about the

model coefficients and thereby enhance the inference quality.

After incorporating the penalty Pλ,γ(w), the optimization

problem (2) takes the form

ŵ = argmin
w

1

n

n
∑

i=1

ρτ (yi − xT
iw) + Pλ,γ(w). (3)

By defining an auxiliary variable z, (3) can be rewritten as

min
{w,z}

1

2
(‖z‖1 + (2τ − 1)1T

nz) + n Pλ,γ(w), (4)

subject to z+Xw = y,

where X = [x1, . . . ,xn]
T ∈ R

n×P .

Although, LASSO [24], [25] is a popular choice as penalty

function, it leads to estimation bias. To overcome this lim-

itation, MCP and SCAD penalties can be used Pλ,γ(w) =

∑P
p=1 gλ,γ(wp), [26]. The definitions of MCP [10] and SCAD

[11] are given by:

gMCP
λ,γ (wp) =

{

λ|wp| − w2
p

2γ , |wp| ≤ γλ
γλ2

2 , |wp| > γλ
for γ ≥ 1, (5)

and

gSCAD
λ,γ (wp) =











λ|wp|, |wp| ≤ λ

− |wp|
2−2aλ|wp|+λ2

2(γ−1) , λ < |wp| ≤ γλ
(γ+1)λ2

2 , |wp| > γλ

for γ ≥ 2.

(6)

Further, MCP and SCAD are weakly convex for ρ ≥ 1
γ

and

ρ ≥ 1
γ−1 , respectively [26].

The LLA framework solves this sparse penalized-quantile

regression (4) in an iterative procedure by obtaining the sub-

gradients of these penalties, i.e., it solves LASSO quantile

regression in each iteration. In the next section, we present

an ADMM-based algorithm that alleviates the outer loop that

appears in the LLA framework.

III. ADMM FOR SPARSE-PENALIZED QUANTILE

REGRESSION

In order to employ the ADMM for solving (4), we write

the associated augmented Lagrangian function as

Lρλ
(w, z,λ) =

1

2
(‖z‖1 + (2τ − 1)1T

nz) + nPλ,γ(w)

+ λT(z+Xw − y) +
ρλ

2
‖z+Xw − y‖22,

(7)

where λ ∈ R
n is Lagrange multiplier, and ρλ is the penalty

parameter. ADMM tries to find a saddle point for the aug-

mented Lagrangian function in an iterative procedure [27]. The

(k+1)th iteration of a standard two-block ADMM algorithm

can be expressed as [27]

w(k+1) = argmin
w

Lρλ
(w, z(k),λ(k)), (8a)

z(k+1) = argmin
z

Lρλ
(w(k+1), z,λ(k)), (8b)

λ(k+1) = λ(k) + ρλ(z
(k+1) +Xw(k+1) − y). (8c)

It can be seen that for optimization in (4), the primal update

can be written as

w(k+1) = argmin
w

n

P
∑

p=1

gλ,γ(wp) + (λ(k))TXw

+ρλ(z
(k) − y)T(Xw) +

ρλ

2
wTXTXw.

(9)

Although each basic function gλ,γ(wp) has a closed-form

proximal function, for a general design matrix X, there is no

simple closed-form solution to obtain w. This update can be

carried out by block coordinate descent iteratively [27],or by a

variety of ADMM methods that are capable of looking at each

element separately. However, to the best of our knowledge, any

existing ADMM based approaches [19]–[22] cannot guarantee

convergence in the absence of Lipschitz differentiability and
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convexity of the objective function, as is the case with our

problem.

To solve the challenge mentioned above, we propose an

ADMM-based algorithm, which is referred as IAD, with an

time-increasing penalty parameter. First, by having β > 1 in

each iteration, the ρλ can be updated as:

ρ
(k+1)
λ = βρ

(k)
λ . (10)

Moreover, the update of w is split into P steps. The pth

element of w is updated in the pth iteration as follows:

w(k+1)
p = argmin

wp

L
ρ
(k+1)
λ

(w
(k+1)
<p , wp,w

(k)
>p , z

(k),λ(k)).

(11)

After several simplifications, we can see that the update of the

pth element of w is given by

w(k+1)
p = argmin

wp

ngλ,γ(wp) +
ρ
(k+1)
λ ‖X:,p‖22

2

∥

∥wp − ap
∥

∥

2

2
,

= Proxgλ,γ
(ap;

n

ρ
(k+1)
λ ‖X:,p‖22

), (12)

where ap =
−XT

:,pX<pw
(k+1)
<p −XT

:,pX>pw
(k)
>p−( λ

(k)

ρ
(k+1)
λ

+y−z)TXp

‖X:,p‖2
2

.

Both MCP and SCAD admit closed-form solutions of the prox-

imal operator [28]. Next, the update of z can be formulated

as:

z(k+1) = argmin
z

L
ρ
(k+1)
λ

(w(k+1), z,λ(k))

= argmin
z

1

2
(‖z‖1 + (2τ − 1)1T

nz) + (λ(k))Tz

+
ρ
(k+1)
λ

2
‖z+Xw(k+1) − y‖22. (13)

It can shown that the update step of z in ADMM has a closed-

form solution. By merging (τ − 1
2 )1

T
nz, (λ(k))Tz, and ‖z +

Xw(k+1) − y‖22 together, a component-wise solution can be

obtained as

z(k+1) = argmin
z

ρ
(k+1)
λ

2
‖z‖1 +

1

2
‖z−α‖22

= Shrink
(

αi,
ρ
(k+1)
λ

2

)n

i=1
, (14)

where α = (y−Xw(k+1))−λ
(k)+(τ− 1

2 )1n

ρ
(k+1)
λ

. Finally, the update

of dual variable λ is given by

λ(k+1) = λ(k) + ρ
(k+1)
λ (z(k+1) +Xw(k+1) − y). (15)

The proposed ADMM based method for solving the sparse-

penalized quantile regression is summarized in Algorithm 1.

It is worth mentioning that the stopping criterion in [27]

can be adapted to our problem as:

‖z(k+1) +Xw(k+1) − y‖2 ≤ √
nǫ1

+ ǫ2 max{‖Xw(k+1)‖2, ‖z(k+1)‖2, ‖y(k+1)‖2} (16a)

Algorithm 1: ADMM with time-increasing penalty pa-

rameter (IAD) for sparse-penalized quantile regression

Initialize w(0), z(0), β(0), λ(0) to zero vectors and

β > 1;

repeat

Update ρ
(k+1)
λ by (10);

for p = 1, . . . , P do

Update w
(k+1)
p by (12);

end

Update z(k+1) by (14);

Update λ(k+1) by (15);

until the convergence criterion in (16) is met;

ρ
(k+1)
λ P max

p
‖X:,p‖22‖w(k+1) −w(k)‖2

+ρ
(k+1)
λ ‖XT(z(k+1)−z(k))‖2 ≤

√
Pǫ1+ ǫ2‖XTλ(k+1)‖2,

(16b)

where a typical choice for ǫ1 and ǫ2 is 10−3. Alternatively,

the algorithm can be terminated when the number of iterations

exceeds a certain number.

IV. CONVERGENCE PROOF

The convergence proof is established by corroborating that

the accumulation of ascents changes in the augmented La-

grangian in all iterations throughout the λ update step, and

penalty parameter update step, can be upper bounded by a

constant value. Therefore, since the augmented Lagrangian is

lower bounded, the weak convexity of MCP, SCAD, and ρτ (·)
guarantees the convergence.

Lemma 1. The augmented Lagrangian

Lρ(k+1)
(w(k+1), z(k+1),λ(k+1)) is lower bounded.

Proof. Since ρτ (z), and Pλ,γ(w) are non-negative functions,

and λ(k+1) ∈ ∂ρτ (z
(k+1)) ⊆ [τ − 1, τ ]n, the augmented

Lagrangian function is lower bounded.

Lemma 2. By ρ = 1
γ

or ρ = 1
γ−1 , for MCP or SCAD

respectively, since ρ
(k)
λ > 2nρ

minp ‖X:,p‖2
2

, by having Ω(k) =

ρ
(k)
λ − nρ

minp ‖X:,p‖2
2

the following inequality holds:

L
ρ
(k)
λ

(w(k), z(k),λ(k))−L
ρ
(k−1)
λ

(w(k−1), z(k−1),λ(k−1)) ≤

− Ω(k)

2
‖w(k) −w(k−1)‖22 −

ρ
(k)
λ

2
‖z(k) − z(k−1)‖22

+
P

ρ
(k)
λ

+
P (β − 1)

2ρ
(k−1)
λ

. (17)

Proof. The second term of (17) comes from the weak con-

vexity of MCP or SCAD, and ρτ (·). Also, as long as λ(k) ∈
[τ − 1, τ ]n, ∀k ≥ 1, ‖λ(k) −λ(k−1)‖2 ≤ P ; therefore, the the

augmented Lagrangian’s change in the λ update step can be

bounded by P

ρ
(k)
λ

. Moreover, by utilizing (10) to update ρλ, the

augmented Lagrangian’s change in this step can be bounded
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by
P (β−1)

2ρ
(k−1)
λ

. Therefore, by considering the update steps of λ

and ρλ together, the third term of (17) can be obtained.

Theorem 1. For suitable values if ρ
(0)
λ , satisfying ρ

(0)
λ >

nρ

minp ‖X:,p‖2
2

, where ρ > 1
γ

or ρ > 1
γ−1 for MCP

or SCAD, and β > 1 the following holds for the

IAD algorithm: limk→∞ c(k) = limk→∞ ‖z(k) + Xw(k) −
y‖22 + ρ

(k)
λ P 2‖X:,p‖42‖w(k) − w(k−1)‖22 + ρ

(k)
λ ‖XT(z(k) −

z(k−1))‖22 → 0.

Proof. By considering Ω(k) = ρ
(k)
λ − nρ

minp ‖X:,p‖2
2

, we get:

L
ρ
(K)
λ

(w(K), z(K),λK))− L
ρ
(0)
λ

(w(0), z(0),λ(0)) ≤

K
∑

k=1

( P

ρ
(k)
λ

+
P (β − 1)

2ρ
(k)
λ

− Ω(k)

2
‖w(k) −w(k−1)‖22

− ρ
(k)
λ

2
‖z(k) − z(k−1)‖22

)

≤ Pρ
(1)
λ β

β − 1
+

Pρ
(0)
λ β

2
− SK ,

where SK =
∑K

k=1

(

ρ
(k)
λ

2 ‖z(k) − z(k−1)‖22 + Ω(k)

2 ‖w(k) −
w(k−1)‖22

)

. Since the augmented Lagrangian is lower bounded

and each element in the sum SK is non-negative, we

have limK→∞ SK < ∞. Therefore, limk→∞
Ω

(k)
λ

2 ‖w(k) −
w(k−1)‖22 = 0, and limk→∞

ρ
(k)
λ

2 ‖z(k) − z(k−1)‖22 = 0.

Moreover, ‖z(k)+Xw(k)−y‖22 =
‖λ(k)−λ

(k−1)‖2
2

(ρ
(k−1)
λ

)2
goes to zero

when k goes to ∞. Therefore, it can be guaranteed that the

summation of residuals defined as c(k)‖z(k)+Xw(k)−y‖22+
ρ
(k)
λ P 2‖X:,p‖42‖w(k)−w(k−1)‖22+ρ

(k)
λ ‖XT(z(k)−z(k−1))‖22

converges to 0.

V. SIMULATION RESULTS

Here, we conduct experiments in the context of sparse

quantile regression to demonstrate the effectiveness of the

proposed IAD algorithm. For this we considered the following

observation model:

y =
P
∑

p=1

ξpxp + x6 + x12 + x15 + x20 + 0.7ǫx1, (19)

where ǫ
i.i.d∼N (0, 1), and ξp

i.i.d∼N (0, 10−6). We set x1 = Φ(x̃1)
and xp = x̃p, otherwise. Here, Φ(·) being the cumulative

distribution function of N (0, 1) and (x̃1, x̃2, . . . , x̃P )
T ∼

N (0,Σ), where Σpq = 0.5|p−q|. Under these settings the

model to be estimated will be a compressible system [29].

The τ th conditional quantile linear function can be achieved

by
∑P

p=1 ξpxp + x6 + x12 + x15 + x20 + 0.7Φ(τ)−1x1. We

simulate the proposed IAD algorithm to perform the quantile

regression. In our case, γSCAD = 4.1, γMCP = 2.1, ρ
(0)
λ = 3,

β = 1.001 and λ = 0.055. For comparative assessment,

we also simulated QICD [16], LPA [17], and LSCD [17] to

carry out the same quantile regression task. The mean square

error (MSE): E‖ŵ−w‖22 was considered to be a performance

metric.
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Fig. 1: Performance Comparison: (a) MSE versus ADMM

iterations k, (b) Accuracy of correctly recognizing active and

non-active coefficients, (c) MSE versus the number of active

coefficients s in model parameter βτ ∈ R
P .

In the first scenario, we compare the convergence rate,

and the efficiency of these algorithms in terms of MSE.

The simulation results were obtained by averaging over 100

independent trials for (n, P ) = (300, 100) and τ = 0.7. The

learning curves (MSE versus iterations) of the algorithms are

shown in the Fig. 1a. Fig. 1a shows that the proposed IAD is
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able to achieve a lower MSE than other existing approaches.

Furthermore, the IAD algorithm exhibited faster convergence

rate over LPA and LSCD.

In the second scenario, these algorithms were compared on

the accuracy of recognizing active and non-active coefficients

correctly. The accuracy measure is defined as the ratio of

the number of active and non-active coefficients correctly

identified to the total number of coefficients. Fig. 1b shows

the accuracy versus iterations of these algorithms. Fig. 1b

illustrates that the IAD can distinguish active and non-active

coefficients more accurately compared to other methods. Thus,

IAD was able to achieve lower MSE compared to other

approaches.

Finally, in the third scenario, we compared the robustness of

the algorithms under different levels of sparsity (i.e., number

active coefficients increses from 1 to P −1). For this, we gen-

erated observation as y =
∑P

p=1 ξpxp +
∑

i∈M xi + 0.7ǫx1,

with M ∈ {2, . . . , P}, ǫ
i.i.d∼ N (0, 1), and ξp

i.i.d∼ N (0, 10−6).
The iterations number was set large enough to ensure a

fair comparison. Fig. 1c illustrates the MSE vs number of

active coefficients for all algorithms. From Fig. 1c, it can

be observed that the proposed IAD performs consistently

against all sparsity-levels, varying from highly-sparse to non-

sparse. Whereas other state-of-the-art approaches exhibit poor

performance when the sparsity-level varies from moderately-

sparse to non-sparse.

VI. CONCLUSIONS

In this paper, an ADMM based algorithm with time-

increasing penalty parameters for the quantile regression pe-

nalized with non-convex and non-smooth sparse-penalties has

been proposed. With our novel analysis, the convergence proof

for the proposed algorithm has been conducted. The simulation

results demonstrated that this single loop ADMM algorithm

could achieve better MSE than the QICD method and the

LLA framework. Also, this algorithm performs consistently

against all sparsity-levels, especially in moderately-sparse or

non-sparse, where other algorithms had shown worse results.
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