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Abstract—Recently, a novel class of nonconvex sparse regular-
izers which can preserve the convexity of the cost function has
gained considerable attention. These regularizers are expressed as
difference of two convex functions, where the parameterized sub-
trahend function can be adjusted flexibly to maintain the overall
convexity. In this paper we propose a unified class of such DC-
type (Difference-of-Convex) convexity-preserving regularizers.
By selecting proper kernel functions, the proposed regularizer
reproduces existing convexity-preserving models and opens the
way to a large number of promising new regularizers. In order
to solve the convex but involved regularization model, we propose
a novel iterative algorithm based on DC programming. Unlike
normal DC algorithms, the proposed method is guaranteed to
converge to a global minimizer of the cost function. In addition,
compared to algorithms for existing convexity-preserving models,
the proposed algorithm makes less stringent assumptions on the
kernel functions, thus is more general. Moreover, the proposed
algorithm can be interpreted as a nested forward-backward
splitting method with overrelaxed step size, which leads to its fast
convergence. Numerical experiments are conducted to verify the
efficiency of our algorithm with comparisons to existing methods.

Index Terms—sparse recovery, nonconvex regularizers, DC
programming, convexity-preserving models

I. INTRODUCTION

The reconstruction of sparse signals usually relies on solv-
ing the following type of regularized least-squares problems:

minimize
x

J(x) :=
1

2
‖y −Ax‖22 + λΨ(x), (1)

where y ∈ Rm, A ∈ Rm×n is the measurement matrix, λ > 0
is a tuning parameter, and Ψ : Rn → R is a regularizer that
evaluates sparseness of the solution.

Ideally, Ψ should be the l0 pseudo-norm, i.e., the number
of nonzero components in x. However, this discontinuous
regularizer leads to NP-hard optimization problem [1]. To
circumvent this difficulty, one usually resorts to some contin-
uous approximation of the l0-norm in practice. Earlier studies
usually adopt convex regularizers (e.g., l1-norm [2], Huber
function [3]) to ensure efficient solution of (1). Nevertheless,
due to coercivity, such regularizers usually overpenalize the
ith component xi when |xi| is large, which causes underes-
timation of the true solution [4]. To overcome this problem,
continuous nonconvex regularizers (e.g., SCAD [5], MCP [4])
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have been proposed to pursue less biased estimation. But nor-
mal nonconvex regularizers yield computationally expensive
nonconvex programs, and the estimate may get stuck in local
minima, which in turn causes performance degradation.

To resolve this situation, an unusual class of nonconvex reg-
ularizers which can preserve the convexity of the cost function
has recently been proposed [6]–[8]. The first regularizer of this
type is the generalized minimax concave (GMC) penalty [6]:

ΨGMC(x) := l1(x)− (l1�qB)(x), (2)

where l1(x) := ‖x‖1 is the l1-norm, qB(x) := 1
2‖Bx‖

2
2 is a

quadratic smoothing function with B ∈ Rp×n, � is the infimal
convolution operator. For f, g : Rn → R, (f�g) is defined as:

(f�g)(x) := inf
z∈Rn

(f(z) + g(x− z)) , (3)

which is known to be convex if f and g are both convex [9].
If B is the identity matrix, ΨGMC reproduces the minimax
concave penalty (MCP [4]), hence the GMC penalty is a
nonseparable generalization of MCP. Remarkably, in contrast
to the standard MCP, the shape of ΨGMC can be regulated
flexibly via changing B. It has been proven [6] that if

ATA � λBTB,

then the concavity of −λ(l1�qB)(x) is overpowered by the
convexity of 1

2‖y −Ax‖
2
2, and the cost function J is convex.

Therefore, the GMC penalty can achieve less biased estimation
without losing the overall convexity of the problem.

The powerful idea of the GMC penalty has attracted con-
siderable attention, and efforts have been made to broaden its
applicability [7], [8], [10]. One notable extension is the linearly
involved generalized Moreau enhanced (LiGME) model [7]:

ΨLiGME(x) = ψ(Lx)− (ψ�qB)(Lx), (4)

where L ∈ Rq×n is an analysis matrix which encodes the
sparsifying domain of the signal x (e.g., wavelet matrix [11],
discrete differential operator [12]); ψ is a kernel function
which is no longer restricted to the l1-norm, but can be any
convex function with computable proximal operator [13]. Ac-
cordingly, the LiGME model allows applying the construction
technique of GMC to more general convex kernel functions.
On the other hand, another useful extension termed Sharpen-
ing Sparse Regularizers (SSR) framework [8] considers the
following formulation:

ΨSSR(x) := l1(x)− ((l1 ◦ L)�(Φ ◦B))(x), (5)
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where ◦ is the function composition operator, the analysis ma-
trix L is embedded at a different position, and Φ is a smoothing
function which is not restricted to the l2-norm. While the SSR
model does not consider variability of the kernel function,
it allows adopting different smoothing functions Φ, thus is
able to regulate the shape of the regularizer more delicately.
For both extensions, overall-convexity conditions and solution
algorithms based on proximal splitting methods [13], [14] have
been derived independently so far.

In this paper, we are devoted to unifying and generaliz-
ing the aforementioned studies. We propose a novel class
of convexity-preserving regularizers and present its overall-
convexity condition. By selecting proper kernel functions, the
proposed regularizer reproduces existing convexity-preserving
models [6]–[8] and opens the way to a large number of
promising new regularizers. In addition, despite the involved
formulation of the cost function, we derive a unified DC-
type (Difference-of-Convex [15]) algorithm for minimizing it.
The proposed algorithm solves the difficult original problem
via solution to a sequence of simpler subproblems. As long
as the subproblems are solvable, the proposed algorithm is
implementable, which poses a less stringent requirement com-
pared to prior arts [6]–[8]. Although DC algorithms are locally
convergent in general, we establish the convergence of the
proposed algorithm to a global minimizer under the overall-
convexity condition, which ensures its reliability. Moreover,
we unravel the connection of our algorithm with the algo-
rithm proposed in the original paper of the GMC model
[6], whereby the proposed algorithm can be interpreted as
a nested forward-backward splitting method with overrelaxed
step size. The interpretation leads to the fast convergence of
our algorithm. Numerical experiments demonstrate superior
convergence speed of the proposed algorithm over existing
algorithms.

Notation

Let N,R be the sets of nonnegative integers and real
numbers. For n-dimensional Euclidean space Rn, 〈·, ·〉 and
‖ · ‖p (p ≥ 1) denote respectively the inner product and the
lp-norm in Rn. 0n stands for the n×1 zero vector. In denotes
the n×n identity matrix. For A ∈ Rm×n, AT ∈ Rn×m denotes
its transpose. For a twice differentiable function f : Rn → R,
∇2f(x) ∈ Rn×n denotes its Hessian matrix at x. For a convex
function f : Rn → R∪{+∞}, the subdifferential of f denoted
as ∂f : Rn → 2R

n

is the set-valued operator

∂f : x 7→ {u ∈ Rn | (∀z ∈ Rn) 〈z − x, u〉+ f(x) ≤ f(z)}.

We denote Γ0(Rn) as the set of all proper lower semicontin-
uous convex functions from Rn to R ∪ {+∞} [9]. For f in
Γ0(Rn), the proximal operator of f is defined as

Proxf (x) = arg min
z∈Rn

{
f(z) +

1

2
‖x− z‖22

}
.

We say that f is proximable if Proxγf can be computed
efficiently for every γ > 0.

TABLE I
PRIOR ARTS AS INSTANCES OF THE PROPOSED REGULARIZER

ψ1(x) ψ2(y) φ(y) D

GMC [6] ‖x‖1 ‖y‖1 1
2
‖By‖22 In

LiGME [7] ψ(Lx) ψ(y) 1
2
‖By‖22 L

SSR [8] ‖x‖1 ‖Ly‖1 Φ(By) In

II. A UNIFIED CLASS OF CONVEXITY-PRESERVING
REGULARIZERS

In this section, we present a unified class of convexity-
preserving regularizers with its overall-convexity condition.

A. Abstract Formulation

The proposed class of convexity-preserving regularizers is
formulated as follows:

ΨCP(x) := ψ1(x)− (ψ2�φ)(Dx), (6)

where ψ1 ∈ Γ0(Rn), ψ2 ∈ Γ0(Rp) are kernel functions,
D ∈ Rp×n, the smoothing function φ ∈ Γ0(Rp) is twice
continuously differentiable everywhere on Rp.

We note that different from the GMC [6], LiGME [7] and
SSR [8] models, the formulation of (6) is abstract, i.e., it does
not require ψ1, ψ2 to be sparseness-promoting or require D to
encode the sparsifying domain of the interested signal. Instead,
every regularizer of the form (6) can be regarded as an instance
of ΨCP. In this light, existing convexity-preserving regularizers
can be reproduced by selecting proper kernel functions and
smoothing function, as summarized in Table I.

Moreover, considering that (ψ2�φ) is a smooth approxima-
tion of ψ2 [16], ΨCP can be regarded as a partially smoothed
approximation of the DC function ψ1(x) − ψ2(Dx). Since
many nonconvex regularizers encountered in compressive
sensing are DC functions [17] and can be reformulated into the
form of ψ1(x) − ψ2(Dx), the proposed regularizer certainly
encompasses a large number of promising new regularizers,
which will be a direction of future research.

B. Overall-Convexity Condition

By designing the shape of φ properly, the overall-convexity
of the cost function

JCP(x) :=
1

2
‖y −Ax‖22 + λΨCP(x) (7)

can be preserved; see the following proposition.

Proposition 1. If ATA � λDT∇2φ(z)D holds for every z ∈
Rp, then JCP is a convex function.

Proof. The cost function can be rewritten as follows,
1

2
‖y −Ax‖22 + λΨCP(x)

=
1

2
‖y −Ax‖22 + λψ1(x)− λ inf

v∈Rp
{ψ2(v) + φ(Dx− v)}

= sup
v∈Rp

{
1

2
‖y −Ax‖22 + λ [ψ1(x)− ψ2(v)− φ(Dx− v)]

}
= sup

v∈Rp

{Mv(x) + λ [ψ1(x)− ψ2(v)]} ,

2052



where we define Mv(x) := 1
2‖y−Ax‖

2
2−λφ(Dx− v). Since

∇2Mv(x) = ATA− λDT∇2φ(Dx− v)D

is positive semidefinite for every x ∈ Rn from assumption
(cf. [18, A.4.4] for derivation of ∇2Mv(x)), Mv is convex
[19, Thm 2.1.4]. Therefore, JCP is the supremum of a class
of convex functions {Mv(·) + λ [ψ1(·)− ψ2(v)]}v∈Rp , which
yields the convexity of JCP from [9, Prop 8.16].

It should be noted that Proposition 1 essentially embraces
overall-convexity conditions of existing convexity-preserving
models [6]–[8]. Especially, if φ(·) := qB(·), then the overall-
convexity condition required in Proposition 1 is simplified into

ATA � λDTBTBD,

which is easily verifiable in practice.

III. A DC-TYPE SOLUTION ALGORITHM

Under Proposition 1, the minimization of JCP(x) can be
regarded as a special DC program [15] with overall-convexity,
which admits the following DC decomposition:

minimize
x∈Rn

JCP(x) := g(x)− h(x), (8)

where convex functions g, h are defined as

g(x) :=
1

2
‖y −Ax‖22 + λψ1(x), (9)

h(x) := λ(ψ2�φ)(Dx). (10)

(To see convexity of h, please refer to [9, Prop 12.11])
Despite convexity, solving (8) is difficult due to the involved

formulation of h. In this section, by generalizing our previous
work [20], we derive a DC-type algorithm for (8) and establish
its convergence to a global minimizer under mild conditions.

A. Derivation of the Proposed Algorithm

The proposed algorithm considers applying a standard ap-
proach for DC programs, termed the basic DCA scheme [15],
to (8). It consists in repeating the following two steps
step 1: obtain uk ∈ ∂h (xk),
step 2: compute xk+1 by

xk+1 ∈ arg min
x∈Rn

g(x)− 〈uk, x〉,

until the sequence of estimates (xk)k∈N converges.
For normal DC programs where h has a closed-form ex-

pression, the step 1 is straightforward. However, the infimal
convolution operator in (10) poses a computational difficulty in
computing uk ∈ ∂h(xk). Fortunately, we resolve this obstacle
via the following proposition.

Proposition 2. Suppose that for every x ∈ Rn, the following
optimization program has at least one solution:

min
v∈Rp

ψ2(v) + φ(Dx− v), (11)

then ∂h is single-valued and can be computed by

∂h(x) = {λDT∇φ(Dx− vx)}, (12)

where vx is an arbitrary solution of (11), and the RHS of (12)
does not depend on the choice of such a solution vx.

Proof sketch. According to [9, Thm 16.47],

∂h(x) = λ∂ ((ψ2�φ) ◦D) (x) = λDT∂(ψ2�φ)(Dx). (13)

Since the definition of vx implies that

(ψ2�φ)(Dx) = ψ2(vx) + φ(Dx− vx),

we have the following from [9, Prop 16.61]:

∂(ψ2�φ)(Dx) = ∂ψ2(vx) ∩ ∂φ(Dx− vx).

Smoothness of φ implies that

∂φ(Dx− vx) = {∇φ(Dx− vx)} ,

hence ∂(ψ2�φ)(Dx) ⊂ {∇φ(Dx− vx)}. Combining this
with the nonemptiness of ∂(ψ2�φ)(Dx) yields

∂(ψ2�φ)(Dx) = {∇φ(Dx− vx)} . (14)

Substituting (14) into (13) completes the proof.

Applying Proposition 2 to the basic DCA scheme yields
Algorithm 1. It should be noted that Algorithm 1 is imple-
mentable as long as (15) and (16) can be solved by some inner
iterative algorithms. In particular, if ψ1, ψ2 are proximable
functions or their composition with linear operators, which is
the case of prior arts [6]–[8], then (15) and (16) can be solved
efficiently via, e.g., ADMM [21]. Therefore, Algorithm 1 is
more general than algorithms for existing convexity-preserving
models.

Algorithm 1: The Proposed DC Algorithm
Initialization: k = 0, x0 ∈ Rn
Repeat the following steps until convergence.
Step 1: obtain vk by

vk ∈ arg min
v∈Rp

ψ2(v) + φ(Dxk − v), (15)

and compute uk = λDT∇φ(Dxk − vk).
Step 2: compute xk+1 by

xk+1 ∈ arg min
x∈Rn

1

2
‖y−Ax‖22+λψ1(x)−〈uk, x〉, (16)

and update k ← k + 1.

B. Convergence Properties

It is well known that every limit point x∗ of the sequence
(xk)k∈N generated by the basic DCA scheme is a critical point
of g− h, i.e., 0n ∈ ∂g (x∗)− ∂h (x∗) [22]. However, being a
critical point of g−h is a necessary but insufficient condition
for being a local minimizer. Moreover, even if g − h is
convex, the convergence guarantee generally does not improve
because ∂(g−h)(x) 6= ∂g(x)−∂h(x). Accordingly, one may
concern that Algorithm 1 yields worse convergence guarantee
in comparison with existing algorithms based on proximal
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splitting methods [6]–[8]. Fortunately, the following theorem
establishes convergence of Algorithm 1 to a global minimizer
of JCP, which dispels aforementioned concerns.

Theorem 1. Let (xk)k∈N be a sequence generated by Al-
gorithm 1. Suppose that conditions required in Proposition 1
and 2 are satisfied, and that arg minx∈Rn JCP(x) is nonempty
and bounded, then every limit point of (xk)k∈N is a global
minimizer of JCP.

Proof sketch. Since JCP = g−h, we have JCP +h = g. Then
from [9, Thm 16.47], ∂JCP(x)+∂h(x) = ∂g(x) holds for any
x ∈ Rn. Since ∂h(x) is single-valued from Proposition 2, we
can guarantee that ∂JCP(x) = ∂g(x)− ∂h(x).

Let x∗ be a limit point of (xk)k∈N, then the condition that
x∗ is a critical point of g − h yields that

0n ∈ ∂g (x∗)− ∂h (x∗) =⇒ 0n ∈ ∂JCP (x∗) .

Since JCP is convex from Proposition 1, the condition above
implies that x∗ is a global minimizer of JCP [9, Thm. 16.3].

C. On the Efficiency of Algorithm 1

Although it is difficult to analyse the convergence rate
of Algorithm 1 theoretically, we can establish an intuitive
interpretation for its empirically fast convergence. In this
section, we unravel the connection of Algorithm 1 with an
existing algorithm for solving the GMC model. The latter
algorithm, firstly proposed in the pioneering work of Selesnick
[6], is based on forward-backward splitting method [13].

Here we restrict our discussion to the GMC model, i.e., we
assume that ψ1(·) = ψ2(·) = ‖ ·‖1, φ(·) = qB(·), D = In. We
consider a special implementation of Algorithm 1, assuming
that in the basic DCA scheme, the subgradient uk is computed
at xk−1 instead of xk. In addition, we solve (15) and (16) by
forward-backward splitting (FBS) method introduced in [13].
For the kth outer iteration of Algorithm 1, applying FBS to
(15) yields the following inner iterative steps:

sk,i+1 = vk,i − ρ1BTB (vk,i − xk−1) ,

vk,i+1 = soft (sk,i+1, ρ1) ,

where vk,i is the ith inner estimate of vk, sk,i is an auxiliary
variable. ρ1 ∈ (0, 2/‖BTB‖2) is the step size. soft(·) is the
soft thresholding operator. We adopt vk,0 = vk−1 as the initial
guess. Similarly, applying FBS to (16) yields

wk,j+1 = xk+1,j − ρ2
[
AT (Axk+1,j − y)− uk

]
xk+1,j+1 = soft (wk,j+1, ρ2λ) ,

where ρ2 ∈ (0, 2/‖ATA‖2), xk+1,0 = xk is the initial guess.
In addition, we assume that the inner iterative procedures for
(15) and (16) are both terminated after only one inner iteration,
i.e., we set vk = vk,1, xk+1 = xk+1,1. Adopting the same

design of B as [6] (i.e., λBTB = γATA with γ ∈ (0, 1))
yields the following implementation of Algorithm 1:

wk = xk − ρ2AT [A (xk + γ (vk − xk))− y] ,

sk+1 = vk − ρ′1γATA(vk − xk),

xk+1 = soft(wk, ρ
′
1λ),

vk+1 = soft(sk+1, ρ2λ),

where ρ′1 = ρ1/λ ∈
(
0, 2/

(
γ‖ATA‖2

))
.

It can be verified that the preceding is exactly the iterative
steps of Selesnick’s algorithm, except that in [6], ρ′1 and ρ2
are replaced by a common step size ρ with the value range

ρ ∈
(
0,min

{
2/‖ATA‖2, 2(1− γ)/

(
γ‖ATA‖2

)})
.

If γ → 1, it can be verified that the upper bound of ρ goes
to zero, whilst that of ρ′1 and ρ2 go to 2/‖ATA‖2. Since
in the GMC model, larger γ generally leads to less biased
estimation [7, Example 2], Algorithm 1 can be regarded as
a nested forward-backward splitting method with overrelaxed
step size in this case. Therefore, it is reasonable to expect
Algorithm 1 to achieve fast convergence.

IV. NUMERICAL EXPERIMENTS

To verify the efficiency of Algorithm 1, we conduct nu-
merical experiments in a scenario of standard sparse recovery
problems. Sparse signal x? ∈ R1000 is generated as follows: 20
out of 1000 components are uniformly selected to be nonzero,
the value of which follow standard normal distribution. The
observation is y = Ax? + ε, where the entries of A ∈
R200×1000 follow the standard normal distribution, ε is additive
white Gaussian noise. The signal-to-noise ratio (SNR) is 30dB,
which is defined as SNR := 20 log10 (‖Ax?‖2/‖ε‖2) (dB).
We adopt GMC penalty [6] as the sparse regularizer. Since
LiGME [7], SSR [8] and the proposed regularizer are all
extensions of the GMC penalty, all of them can reproduce the
GMC penalty by properly selecting kernel functions, whereby
we can conduct a fair comparison between Algorithm 1 and the
algorithms proposed in previous studies [6]–[8]. For Algorithm
1, we solve (15) and (16) by ISTA [23]. We consider the
l1-regularization model (solved by ISTA) as a baseline for
conventional regularization models. All results are averaged
over 100 Monte Carlo runs.

Fig. 1 shows dependency of Mean Squared Error (MSE)
on the regularization parameter λ for the l1-regularization
model and the convexity-preserving models (which amounts
to the GMC model in this case). The results indicate over
3dB estimation performance gain of the convexity-preserving
model over conventional l1-regularization model.

Fig. 2 shows MSE versus computation time for various
algorithms. The circle mark respectively represent 1000 it-
erations of GMC, 100 iterations of LiGME/SSR and 1 outer
iteration of Algorithm 1. From Fig. 2, the ISTA algorithm (Fig.
2: magenta) for l1-regularization model converges especially
fast, but can only obtain a less satisfactory estimate. Algo-
rithms for convexity-preserving models achieve more accurate
estimation, with convergence speed: Algorithm 1 > LiGME
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Fig. 1. MSE vs regularization parameter. Fig. 2. MSE vs computation time.

> SSR > GMC. In addition, we remark that the triangle
mark on the curve of Algorithm 1 represents its second outer
iteration. This implies that as observed in our previous work
[20], merely two iterations of Algorithm 1 suffice to produce
a satisfactory solution, which serves as a useful stopping
criterion in practice.

V. CONCLUDING REMARKS

In this paper, we have proposed a unified class of convexity-
preserving sparse regularizers, and have presented a gen-
eral overall-convexity condition for it. In order to solve the
resulting regularization model, we have proposed a unified
DC-type solution algorithm. We have established the global
convergence of the proposed algorithm, and have provided
an intuitive interpretation for its fast convergence. Numerical
experiments have demonstrated the efficiency of the proposed
method.
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