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Abstract—In this paper, we propose a novel safe screening
test for Lasso. Our procedure is based on a safe region with a
dome geometry and exploits a canonical representation of the
set of half-spaces (referred to as “dual cutting half-spaces” in
this paper) containing the dual feasible set. The proposed safe
region is shown to be always included in the state-of-the-art
“GAP Sphere” and “GAP Dome” proposed by Fercoq et al. (and
strictly so under very mild conditions) while involving the same
computational burden. Numerical experiments confirm that our
new dome enables to devise more powerful screening tests than
GAP regions and lead to significant acceleration to solve Lasso.

Index Terms—Lasso, convex optimization, safe screening.

I. INTRODUCTION

Finding sparse representations is a fundamental problem
in signal processing and machine learning. It consists in
decomposing some vector y ∈ Rm as a linear combination
of a few columns (referred to as atoms) of a matrix A =
[a1, . . . ,an] ∈ Rm×n called dictionary. A popular strategy
for obtaining sparse representations is to solve the so-called
Lasso problem:

x? ∈ argmin
x∈Rn

P (x) , 1
2‖y −Ax‖22 + λ‖x‖1 (1)

where λ > 0, see [1]. Inasmuch as solving (1) may require
a heavy computational burden as n becomes large, the design
of efficient optimization techniques tackling this problem has
become an active field of research. Among the most popular
approaches addressing (1), one can mention [2–4].

A noteworthy approach in this field is the acceleration
method proposed by El Ghaoui et al. in [5] and known as
safe screening, which aims to design simple tests to identify
zeros entries in the minimizers of (1). This knowledge can
then be exploited to (potentially significantly) reduce the
dimensionality of the problem by discarding the atoms of the
dictionary weighted by zero. Over the past few years, safe
screening has sparked a surge of interest in the literature, see
e.g., [6–13] and beyond `1-regularization [14–17].

Standard screening methodologies leverage the concept of
“safe region”, a set provably containing the optimal solution

Code is available at https://gitlab.inria.fr/cherzet/holder-safe.

of the dual problem of (1), see e.g., [18, Section 4]. The choice
of the safe region reveals to be crucial to the final effectiveness
and efficiency of the screening tests. On the one hand, loosely
speaking, “smaller” regions lead to more effective tests, see
[18, Lemma 1]. On the other hand, the complexity of the tests
is closely related to the geometry of the safe region. As a
consequence, safe regions with “simple” geometries such as
spheres [5–9] or domes [12, 13] are commonly considered in
the literature.

One state-of-the-art methodology to find a good compro-
mise between these two requirements was proposed in [8]: the
authors introduced two new safe regions (referred to as “GAP
sphere” and “GAP dome”) whose radii are proportional to the
duality gap attained by the primal-dual feasible couple used
to design the region. The radii of GAP regions have therefore
the desirable feature to converge to zero when the primal-dual
feasible couple tends to a primal-dual solution, and thus lead
to extremely effective screening tests.

In this paper, we propose a new safe dome which is provably
contained in the GAP regions. The definition of our dome
is based on a fine characterization of the set of half-spaces
(referred to as “dual cutting half-spaces” hereafter) containing
the whole dual feasible set. At the time of publication, we
become aware of a parallel work [19] using a different
technique to obtain the same safe region.

The paper is organized as follows. In the next section, we
define the notations used throughout the paper. In Section III,
some background on Lasso and safe screening is provided.
In Section IV, we derive a fine characterization of the set of
dual cutting half-spaces and present our new safe dome. The
relevance of our proposed approach is finally illustrated in
Section V via numerical simulations.

II. NOTATIONS

We use the following notational conventions throughout the
paper. Boldface uppercase (e.g., A) and lowercase (e.g., x)
letters respectively represent matrices and vectors. 0n denotes
the all-zeros vector of Rn. 〈·, ·〉 stands for the canonical inner
product between two vectors. The ith entry of a vector x is
denoted x(i). Calligraphic letters (e.g., S) are used for sets.
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III. BACKGROUND

In this section, we provide some elements of convex analysis
for problem (1) and recall the main ingredients underlying the
concept of safe screening for Lasso.

A. Dual problem and optimality conditions

We first note that (1) admits at least one minimizer since
P (·) is continuous, proper and coercive [20, Theorem 2.14].
The dual problem of (1) writes as

u? = argmax
u∈U

D(u) , 1
2‖y‖

2
2 −

1
2‖y − u‖22 (2)

where U , {u ∈ Rm : ‖ATu‖∞ ≤ λ} is the so-called dual
feasible set, see [21, Appendix A]. Since U is closed and D(·)
is strictly concave, problem (2) admits a unique maximizer u?.

It is known that strong duality holds between problems (1)
and (2), that is

∀x ∈ Rn,∀u ∈ U : gap(x,u) , P (x)−D(u) ≥ 0 (3)

with equality if and only if (x,u) is primal-dual optimal, see
e.g., [20, Theorem A.2]. Moreover, any primal-dual optimal
couple (x?,u?) must verify the following optimality condi-
tions [21, Section 2]:

u? = y −Ax? (4)

and,

〈ai,u?〉 =

{
λ sign(x?(i)) if x?(i) 6= 0,

s ∈ [−λ, λ] otherwise.
(5)

for all i = 1, . . . , n. It is easy to see from these conditions
that x? = 0n is the unique solution of (1) if and only if

λ ≥ λmax , ‖ATy‖∞. (6)

B. Safe screening

Safe screening tests leverage the following consequence
of (5):

|〈ai,u?〉| < λ =⇒ x?(i) = 0. (7)

If the inequality in the left-hand side of (7) is verified for
some index i, the corresponding column of A can therefore
be safely removed without changing the minimum value
of (1). Although computing u? is (generally) as difficult as
solving (1), a weaker version of (7) can be obtained if a region
R ⊆ Rn containing u? (often called “safe region”) is known.
(7) can then be relaxed to:

max
u∈R
|〈ai,u〉| < λ =⇒ x?(i) = 0. (8)

From an effectiveness point of view, R should be chosen as
small as possible. In particular, if R ⊆ R′ then obviously

max
u∈R′

|〈ai,u〉| < λ =⇒ max
u∈R
|〈ai,u〉| < λ, (9)

that is the screening test built from R will always detect at
least as many zeros as that constructed with R′.

From a complexity point of view, the computational cost
of (8) mostly depends on the evaluation of maxu∈R |〈ai,u〉|.

A simple strategy to lower the cost of this operation consists
in building safe regions with “appropriate” geometries. Two
standard choices are spheres and domes.

Sphere regions are defined by their center c ∈ Rm and
radius R ≥ 0:

R = B(c, R) , {u ∈ Rm : ‖u− c‖2 ≤ R}. (10)

Particularizing the left-hand side of (8) to the case where R
is a sphere, we obtain:

max
u∈B(c,R)

|〈ai,u〉| = |〈ai, c〉|+R‖ai‖2. (11)

We see that the solution of the maximization problem then
admits a simple closed form. Its computation only requires
the evaluation of one inner product between ai and c.

Another popular choice of geometry is dome region. A
dome is defined as the intersection of a sphere and an half-
space, that is

R = D(c, R,g, δ) , B(c, R) ∩H(g, δ) (12)

where g ∈ Rm, δ ∈ R and1

H(g, δ) , {u ∈ Rm : 〈g,u〉 ≤ δ}. (13)

In this case, the left-hand side of (8) also admits a closed-form
solution, see [21, Lemma. 3]. More precisely, we have

max
u∈D
|〈ai,u〉| = max

(
max
u∈D

〈ai,u〉,max
u∈D

〈−ai,u〉
)

(14)

and ∀a ∈ Rm \ {0m}, D 6= ∅ and

max
u∈D
〈a,u〉 = 〈a, c〉+R‖a‖2f(ψ1, ψ2), (15)

where

f(ψ1, ψ2) =

{
1 if ψ1 ≤ ψ2,

ψ1ψ2 +
√
1− ψ2

1

√
1− ψ2

2 otherwise

ψ1 =
〈a,g〉
‖a‖2‖g‖2

, ψ2 = min

(
δ − 〈g, c〉
R‖g‖2

, 1

)
.

The cost associated to (15) is mostly dominated by the
computation of 〈g, c〉, 〈ai, c〉 and 〈ai,g〉. Dome tests are
therefore usually slightly more complex to implement than
sphere tests. However, since dome geometry enables smaller
safe regions, they potentially lead to much more effective tests.

C. GAP regions

To conclude this section, we provide the expressions of two
well-known state-of-the-art safe regions proposed in [8]. The
first region takes the form of a sphere and is known as the
“GAP sphere” in the literature. It is defined by the following
choice of parameters:

c = u (16)

R =
√

2gap(x,u)) (17)

1Note that when g = 0m, our definition implies thatH(g, δ) either reduces
to Rm if δ ≥ 0 or is empty if δ < 0.
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where (x,u) can be any primal-dual feasible couple. The
second has the geometry of a dome and is usually dubbed
“GAP dome”. It is defined by the following set of parameters:

c = 1
2 (y + u) (18)

R = 1
2‖y − u‖2 (19)

g = y − c (20)

δ = 〈g, c〉+ gap(x,u)−R2 (21)

where (x,u) can be any primal-dual feasible couple. In the
sequel, with a slight abuse of notation, we will respectively
denote the GAP sphere and the GAP dome as Bgap(x,u) and
Dgap(x,u) to explicitly emphasize their dependence on the
choice of the primal-dual feasible couple (x,u).

Although not proved explicitly in [8], it can be easily shown
(see [22, Appendix ??]) that

Dgap(x,u) ⊆ Bgap(x,u). (22)

These two regions have the desirable feature of having a
radius (see (32)) that decreases to zero when the couple
(x,u) tends to a primal-dual solution. In particular, if
(x,u) = (x?,u?), {u?} = Bgap(x?,u?) and the screening
tests based on GAP regions reduce to (7).

IV. SAFE DOME WITH GENERAL DUAL CUTTING
HALF-SPACES

In this section, we present and motivate our new safe dome
region. The construction of our dome is based on the set of
dual cutting half-spaces H(g, δ):

G , {(g, δ) ∈ Rm × R : 〈g,u〉 ≤ δ ∀u ∈ U}. (23)

The next lemma provides a canonical characterization of G. A
proof can be found in Appendix A-A.

Lemma 1.

G = {(Ax, δ) : x ∈ Rn, δ ≥ λ‖x‖1}. (24)

We now expose our proposed new dome region and state a
result showing that it is guaranteed to perform at least as well
as GAP safe regions presented in Section III-C.

The definition of the proposed dome is encapsulated in the
following theorem:

Theorem 1. Let x ∈ Rn, u ∈ U and

c = 1
2 (y + u) (25)

R = 1
2‖y − u‖2 (26)

g = Ax (27)
δ = λ‖x‖1 (28)

Then

u? ∈ D(c, R,g, δ). (29)

A proof of this result can be found in Appendix A-B. The
safeness of H(Ax, λ‖x‖1) can in fact be seen as a simple
consequence of the Hölder inequality:

〈Ax,u?〉 = 〈x,ATu?〉 ≤ ‖x‖1‖ATu?‖∞ ≤ λ‖x‖1,

where the last inequality follows from dual feasibility of u?.
In the sequel we will therefore refer to the dome defined in
Theorem 1 as “Hölder dome”. We note that, similarly to the
GAP regions, the Hölder dome is completely specified by the
choice of a primal-dual feasible couple (x,u). Hereafter, we
will use the notation Dnew(x,u) to emphasize this fact.

We note that the definition of Dnew(x,u) only differs from
that of Dgap(x,u) in the choice of the half-space H(g, δ),
where the canonical characterization of G in Lemma 1 is
directly exploited in the former. Our next result shows that
this choice is beneficial regarding the size of the safe region:

Theorem 2. For x ∈ Rn, u ∈ U:

Dnew(x,u) ⊆ Dgap(x,u). (30)

Moreover, if P (x) < P (0n) and (x,u) is not primal-dual
optimal, then the inclusion is strict.

A proof of this result can be found in Appendix A-C.
Theorem 2 shows that the Hölder dome is guaranteed to
be a subset of the GAP dome and sphere. From (9), this
suggests that screening tests based on our proposed dome
are ensured to perform at least as well as the two other safe
regions. We also note that the condition “P (x) < P (0n)”,
ensuring Dnew(x,u) ⊂ Dgap(x,u), is very mild and verified
in many practical setups. It is for example the case when the
iterates {x(t)}∞t=1 of an optimization procedure, initialized at
x(0) = 0n and monotically decreasing the cost function, are
used to define the primal point x used in the construction of
the dome.

V. NUMERICAL EXPERIMENT

This section reports an empirical study of the relevance
of the Hölder dome presented in Section IV.2 For the two
experiments, our simulation setup is as follows. We set
(m,n) = (100, 500). For each trial, new realizations of A
and y are generated. The observation y is drawn according to
a uniform distribution on the m-dimensional unit sphere while
A either satisfies i) the entries are i.i.d. realizations of a normal
distribution or ii) A has a Toeplitz structure, i.e., columns are
shifted versions of a Gaussian curve. The columns of A are
then normalized such that ‖ai‖2 = 1 for all i.

a) Radius of safe regions: In this first experiment, we
investigate the size difference between the Hölder and GAP
domes. More precisely, we evaluate the ratio

Rad(Dnew(x,u))
Rad(Dgap(x,u))

(31)

2The code is available at https://gitlab.inria.fr/cherzet/holder-safe.
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Fig. 1. Expected value of the ratio (31) as a function of the duality gap
achieved by (x,u) for the two dictionaries. Each curve corresponds to a value
of the ratio λ/λmax (the value is indicated along the line).

for different choices of x ∈ Rn and u ∈ U , where Rad(S)
denotes the radius of the (closed bounded) set S:

Rad(S) , max
u,u′∈S

1
2‖u

′ − u‖2. (32)

Figure 1 shows the average value of the ratio (31) as a function
of the duality gap achieved by (x,u) for the two considered
dictionaries and three values of the ratio λ/λmax. Results have
been obtained by averaging over 50 trials. As expected (cf.
Theorem 2), the ratios are always lower than 1. One also
observes that the radius of the proposed Hölder dome is up to
0.6 smaller than the GAP dome. As far as our simulation is
concerned, all the curves seem to converge to a ratio close to
0.7 as the dual gap tends to zero.

b) Benchmarks: In this second experiment, we assess the
computational gain obtained with the Hölder dome and GAP-
based regions. To do so, we compare three variants of FISTA
–a standard method to address (1), see [3]– where the itera-
tions are interleaved with screening tests that leverage i) the
GAP sphere, ii) the GAP dome, iii) the Hölder dome. More
precisely, at each iteration t, a screening test is carried out
with the corresponding safe region obtained with parameters
(x(t),u(t)) where x(t) refers to the current iterate and u(t) is
obtained by dual scaling of y −Ax(t) (see [5, Section 3.3]).
We use the “Dolan-Moré” performance profiles [23] to assess
the performance of the three methods.

We run each method with a prescribed computational budget
(the number of floating point operations) on 200 instances
of problem (1). We then evaluate the (empirical) probability
ρ(τ) that a solver achieves a duality gap lower that τ upon
completion. For each setup, the budget is adjusted so that
ρ(10−7) = 50% for the solver using the Hölder dome.

Figure 2 shows the performance profiles for the two con-
sidered dictionaries and different values of the ratio λ/λmax.
One sees that, as far as our simulation setup is concerned,
implementing the screening test (8) with the Hölder dome
improves quite significantly the average accuracy achieved in
all but one setup. These findings support our claim that the
Hölder dome leads to more effective test than the one using
GAP based-region. The case where the three safe regions lead
to comparable results (Gaussian dictionary and λ/λmax = 0.3)
has to be understood as follows: even though the Hölder and
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Fig. 2. Performance profiles of screening methods with different safe regions.
Each row corresponds to a value of λ/λmax. From top to bottom: .3, .5, .8.

GAP domes are expected to perform better than the GAP
sphere, the profiles result from a compromise between the
effectiveness of the test and its complexity. In particular, a
study of our simulation results shows that even though the
tests are less effective, more iterations are carried (in average)
with the GAP sphere in that specific setup, thus leading to a
potentially more accurate solution.

VI. CONCLUSION

In this paper, we introduced a novel safe dome region for
Lasso that can be used to design safe screening tests. We
showed that our proposed dome region is always a (potentially
strict) subset of the GAP sphere and dome, two ubiquitous
safe regions in the literature. The proposed methodology is
shown to allow significant computational gains when solving
Lasso with a prescribed computational budget.
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APPENDIX A
PROOFS

A. Proof of Lemma 1

Let g ∈ Rm and consider the following optimization
problem

δ? = sup
u∈U
〈g,u〉. (33)

By strong duality [20, Equation (12.4) combined with Theo-
rem A.1], we have

δ? = inf
x∈Rn

λ‖x‖1 + η{g = Ax}, (34)

where η{·} denotes the indicator function, which is equal to
0 if the statement in the braces is true and +∞ otherwise.

Hence, if g = Ax for some x ∈ Rn, we have from
(34) that δ? ≤ λ‖x‖1 and therefore (Ax, δ) ∈ G for all
δ ≥ λ‖x‖1. Conversely, if (g, δ) ∈ G then δ? ≤ δ < ∞.
From (34), we thus have that there exists some x such that
g = Ax and δ ≥ λ‖x‖1.

B. Proof of Theorem 1

First remember that a dome is defined as the intersection
of the ball B(c, R) and the half-space H(g,H), see (12). It is
then sufficient to show that both B(c, R) and H(g, δ) are safe.
Finally, the safeness of B(c, R) and H(g,H) respectively
follows from [13, Section 2.2] and Lemma 1.

C. Proof of Theorem 2

LetHnew(x,u) andHgap(x,u) respectively denote the half-
space defining Dnew(x,u) and Dgap(x,u). Consider

u′ ∈ Dnew(x,u) = B(c, R) ∩Hnew(x,u), (35)

where c, R are the parameters defined in (18) and (19),
respectively. Since Dnew(x,u) and Dgap(x,u) only differ in
the definition of their half-space, it is sufficient to show that
u′ ∈ Hgap(x,u), i.e.,

〈y − c,u′〉 ≤ 〈y − c, c〉+ gap(x,u)−R2. (36)

We have

2〈y − c,u′ − c〉 = ‖y − c‖22 + ‖u
′ − c‖22 − ‖y − u′‖22

≤ 2
(
R2 − 1

2‖y − u′‖22
)

=2
(
D(u′)−D(u)−R2

)
(37)

where the inequality follows from the fact that both y and u′

belong to B(c, R). Moreover, one can write

2D(u′) = ‖y −Ax‖22 − ‖y − u′ −Ax‖22 + 2〈Ax,u′〉
≤ ‖y −Ax‖22 + 2〈Ax,u′〉
≤ ‖y −Ax‖22 + 2λ‖x‖1 = 2P (x) (38)

where the inequalities result from the non-negativity of
‖y − u′ − Ax‖22 and the hypothesis that u′ ∈ Hnew(x,u).
Combining (37) and (38), we finally obtain (36), that is
u′ ∈ Hgap(x,u).

Finally, if P (x) < P (0n) and (x,u) is not primal-dual
optimal, then one can verify that u0 , c+ 1

R2 (P (x)−D(u)−
R2)(y − c) belongs to Dgap(x,u) but does not belong to
Dnew(x,u) (see [22, Appendix ??] for more details), i.e., the
strict inclusion Dnew(x,u) ⊂ Dgap(x,u) holds true.
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