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Abstract—We address the problem of safe screening for `1-
penalized convex regression/classification problems, i.e., the iden-
tification of zero coordinates of the solutions. Unlike previous
contributions of the literature, we propose a screening method-
ology which does not require the knowledge of a so-called “safe
region”. Our approach does not rely on any other assumption
than convexity (in particular, no strong-convexity hypothesis
is needed) and therefore applies to a wide family of convex
problems. When the Fenchel conjugate of the data-fidelity term
is strongly convex, we show that the popular “GAP sphere test”
proposed by Fercoq et al. can be recovered as a particular case
of our methodology (up to a minor modification). We illustrate
numerically the performance of our procedure on the “sparse
support vector machine classification” problem.

Index Terms—sparsity, convex problem, safe screening.

I. INTRODUCTION

In the last decades, solving optimization problems promot-
ing sparsity has become a standard task in signal processing,
machine learning or statistics. A common formulation of these
problems reads as follows

(x?, x?) ∈ arg min
(x,x)∈Rn+1

f(Ax + bx+ c) + λ‖x‖1 (1)

where f : Rm → (−∞,+∞] is a closed, convex, proper
function and A ∈ Rm×n, b ∈ Rm, c ∈ Rm, λ > 0
are some problem-specific parameters. Particular instances of
(1) include (among many others) `2 [1] or Kullback-Leibler
[2] sparse regression, logistic [3] and sparse support vector
machine classification [4], etc.

The practical relevance of (1) has given birth to many
numerical procedures to efficiently solve it, see e.g., [5, 6].
Of particular interest in this paper is an acceleration method
first proposed by El Ghaoui et al. in [7] and known as “safe
screening”. The objective of safe screening is the identification
of zero coordinates of x? via simple tests; the variables corre-
sponding to zeros can then be removed from the optimization
problem and thus potentially lead to huge computational and
memory savings. Since the seminal work by El Ghaoui et al.,
the effectiveness of safe screening has been acknowledged by
many authors in different setups, see e.g., [8–12].

In the current state of the art, all the contributions dealing
with safe screening for convex problems leverage the concept

of “safe region”, i.e., a region of the dual space containing
the solution of the dual problem of (1). It is well-known that
the effectiveness of these methods improves as the size of
the safe region decreases. Loosely speaking, “smaller” regions
lead to screening procedures able to identify more zeros. Many
authors have therefore addressed the problem of designing
“good” safe regions, i.e., small-volume regions computable at
low cost, see e.g., [13–18].

The current state-of-the-art methodology in this respect is
the “GAP sphere” first proposed by Fercoq et al. [19] for
LASSO and later on generalized by Ndiaye et al. in [20]. The
construction of a GAP sphere relies on the identification of
some primal-dual feasible couple (x̄, x̄, ū) ∈ Rn+1 × Rm –ū
denotes the dual feasible point– and owns its popularity to the
fact that the radius of the sphere is proportional to the squared-
root of the duality gap evaluated at (x̄, x̄, ū). In particular,
when the iterates of a solving procedure for (1) are used to
construct the GAP sphere, its radius converges to zero: all the
zero components of x? can then be asymptotically identified
by the screening test (under mild regularity conditions).

Despite this desirable feature, the construction of GAP
spheres as suggested by Ndiaye et al. only applies to prob-
lems where the Fenchel conjugate of f is strongly convex,
see [20, Theorem 6]. This precludes the use of GAP safe
regions in popular problems where f corresponds for example
to a Kullback-Leiber divergence or a hinge function. This
restriction has been partially relaxed in [21, 22] where the
construction of the GAP sphere is shown to be possible when
the Fenchel conjugate of f is strongly-convex over (sufficiently
simple) subsets of the dual space.

In this paper, we introduce a new methodology to build
screening tests for convex problem (1). Our method is applica-
ble to any convex function f (in particular no strong-convexity
assumption is needed) and does not require the knowledge of
any safe region. In the case where the Fenchel conjugate of
f is strongly convex, we show that a quadratic relaxation of
our procedure leads to the same test (up to a minor variation)
as the standard GAP sphere region. We illustrate numerically
the relevance of our proposed approach in the case where f is
a hinge function and the Fenchel conjugate of f is therefore
simply convex but not even strictly so.
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II. PROBLEM AND OPTIMALITY CONDITIONS

Without loss of generality1 we consider the nonnegative
version of (1), that is

p? = min
(x,x)∈Rn

+×R
f(Ax + bx+ c) + λ1T

nx. (2)

Since f is assumed to be convex, closed and proper, the dual
problem of (2) can be written as [7, Section 3.1]:

d? = max
u∈Rm

−cTu− f∗(−u) s.t.

{
aT
i u ≤ λ ∀i

bTu = 0
(3)

where f∗ denotes the Fenchel conjugate of f and ai is the ith
column of A. Problems (2)-(3) can also be expressed more
compactly as

p? = min
(x,x)∈Rn+1

p(x, x), d? = max
u∈Rm

d(u), (4)

by using the following definitions:

p(x, x) , f(Ax + bx+ c) + λ1T
nx + I{x ≥ 0n}

d(u) , −cTu− f∗(−u)− I{ATu ≤ λ} − I{bTu = 0}

where I{·} denotes the “indicator” function which is equal to 0
when the statement in the braces is true and to +∞ otherwise.

In the rest of this paper, we suppose that (2) (resp. (3))
admits a nonempty set of minimizers X ? (resp. maximizers
U?). We assume moreover that strong duality holds, i.e.,

gap(x, x,u) , p(x, x)− d(u) ≥ 0 (5)

with equality if and only if (x, x) ∈ X ? and u ∈ U?.
Under strong duality assumption, standard primal-dual opti-

mality conditions write as follows [22, Theorem 1]: (x?, x?) ∈
X ? and u? ∈ U? if and only if

bTu? = 0, aT
i u

? ≤ λ, x?i ≥ 0 ∀i (6)

(aT
i u

? − λ)x?i = 0 ∀i (7)
u? ∈ −∂f(Ax? + bx? + c) (8)

where ∂ denotes the subdifferential operator [23, Chapter 3],
and x?i the ith component of x?.

Safe screening procedures essentially leverage optimality
condition (7). More specifically, if (x?, x?,u?) is a primal-
dual optimal couple we have ∀` ∈ {1, . . . , n}:

aT
` u

? < λ =⇒ x?` = 0. (9)

If f is moreover differentiable (that is ∂f = {∇f}), we have
from (8) that the latter condition can be written as

−aT
` ∇f(Ax? + bx? + c) < λ =⇒ x?` = 0. (10)

We will see hereafter that the so-called “GAP sphere test” and
a quadratic relaxation of the proposed approach can be seen as
generalizations of (9)-(10), valid for any primal-dual feasible
couple (x̄, x̄, ū).

1Problem (2) can be seen as a generalization of (1) since the latter can
always be rewritten as a particular case of the former [9, Section 2].

III. REGION-BASED SCREENING

Standard screening tests, as originally proposed in [7], rely
on the concept of “safe region”. Let (x?, x?,u?) be a primal-
dual optimal solution. We say that a region R ⊂ Rm is safe
for u? if u? ∈ R. In this case, optimality condition (9) can
be relaxed as

max
u∈R

aT
` u < λ =⇒ x?` = 0. (11)

The left-hand side of (11) provides a practical way to identify
zero coordinates of x? provided that the evaluation of the max-
imum overR is tractable. This requirement is usually achieved
by constructing safe regions with favorable geometries (e.g.,
spheres or domes), see [9].

When sphere regions are considered and f∗ is µ-strongly
convex, one of the most effective screening procedure of the
literature is the so-called “GAP sphere test” [19, 20]. Letting
(x̄, x̄, ū) denote a primal-dual feasible couple, this test reads
as follows:

aT
` ū < λ−

√
2
µgap(x̄, x̄, ū) =⇒ x?` = 0. (12)

It can be regarded as a generalization of (9) which holds
for any primal-dual feasible couple (x̄, x̄, ū). In particular, if
(x̄, x̄, ū) is primal-dual optimal then gap(x̄, x̄, ū) = 0 and
one recovers optimality condition (9).

IV. REGION-FREE SCREENING

In this section, we present our “region-free” safe screening
method. The rationale and the main expressions of the pro-
posed approach are introduced in Section IV-A. We emphasize
that no strong-convexity assumption is made in our derivations.
In the case where f∗ is µ-strongly convex, we show in
Section IV-B that (a slight variant of) GAP test (12) can be
recovered as a particular case of our method.

A. Rationale and main expressions

Consider the following problem:

d?` = max
u∈Rm

−cTu− f∗(−u) s.t.


aT
i u ≤ λ i 6= `

aT
` u = λ

bTu = 0.

(13)

We note that (13) corresponds to dual problem (3) where the
constraint “aT

` u ≤ λ” has been strengthened to “aT
` u = λ”.

Since the feasible set of (13) is contained in the feasible set
of (3), we necessarily have:

d? ≥ d?` (14)

with equality if and only if there exists u? ∈ U? verifying
aT
` u

? = λ. As a consequence, if d? > d?` there is no
maximizer of (3) such that aT

` u
? = λ. Using (9), this in turn

implies that x?` = 0 for all minimizers of (2). Formally, this
writes:

d? > d?` =⇒ ∀(x?, x?) ∈ X ? : x?` = 0. (15)
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This implication is the basis of our region-free screening test,
which is encapsulated in the following theorem:

Theorem 1. If ū ∈ Rm is dual feasible then

d(ū) > p`(x, x) =⇒ ∀(x?, x?) ∈ X ? : x?` = 0 (16)

where

p`(x, x) , f(Ax + bx+ c) + λ1T
nx +

∑
i 6=`

I{xi ≥ 0}.

Proof: In view of (15) it is sufficient to show that d(ū) is
a lower bound on d? and p`(x, x) an upper bound on d?` .
Obviously, we have d? ≥ d(ū) since ū is dual feasible.
Moreover, straightforward calculations show that (13) is the
dual problem of “min(x,x)∈Rn+1 p`(x, x)”. We thus have
p`(x, x) ≥ d?` by weak duality. �

We note that the implementation of test (16) does not require
the knowledge of any safe region but simply involves the
comparison between the values of a relaxed primal function
p`(x, x) and the dual function at some feasible point ū. The
choice of the primal-dual couple (x, x, ū) is left as a degree
of freedom to the practitioner. Obviously, one should try
to optimize the effectiveness of the test by minimizing p`
over (x, x) (resp. maximizing d over ū) while keeping the
computational cost of the test reasonable. In this paper, we
consider the following option: given a primal-dual feasible
couple (x̄, x̄, ū), we optimize the value of p` with respect to
its `th component. Test (16) then particularizes as

d(ū) > min
x`

p̄`(x`) =⇒ ∀(x?, x?) ∈ X ? : x?` = 0, (17)

where p̄` is a function defined for all scalars x` as

p̄`(x`) = p`(x̄ + (x` − x̄`)e`, x̄) (18)

and e` refers to the `th vector of the canonical basis
of Rn. In the next subsection, we draw a connection
between (17) and standard GAP sphere test (12). More
specifically, we show that the latter can be obtained from a
quadratic relaxation of the former when f∗ is strongly convex.

B. Connection with GAP

Suppose that p̄`(x`) admits the following upper bound:

∀x` : p̄`(x`) ≤ p̄`(x̄`) + α(x` − x̄`) + β
2 (x` − x̄`)2 (19)

for some parameters α ∈ R, β > 0. Minimizing both sides of
this inequality with respect to x` leads to

min
x`

p̄`(x`) ≤ p(x̄, x̄)− α2

2β
, (20)

where we used the fact that p̄`(x̄`) = p`(x̄, x̄) = p(x̄, x̄) since
(x̄, x̄) is primal feasible. Plugging (20) into (17), we obtain
after a few algebraic manipulations:√

2β gap(x̄, x̄, ū) < |α| ⇒ ∀(x?, x?) ∈ X ? : x?` = 0. (21)

Let us now particularize (21) to the case where f∗ is µ-
strongly convex. The function f : Rm → (−∞,∞] is then
necessarily µ−1-smooth differentiable [23, Theorem 5.26] and
admits a quadratic upper bound at any point z̄ ∈ Rm [23,
Lemma 5.7]:

f(z) ≤ f(z̄) +∇Tf(z̄)(z− z̄) + 1
2µ‖z− z̄‖22. (22)

Using (22) with z̄ = Ax̄ + bx̄+ c and z = z̄ + (x` − x̄`)a`,
it is easy to see that (19) holds with

α = aT
` ∇f(Ax̄ + bx̄+ c) + λ, β = µ−1. (23)

Letting ux̄ , −∇f(Ax̄ + bx̄+ c), the left-hand side of (21)
then takes the following form:√

2
µgap(x̄, x̄, ū) < |λ− aT

` ux̄|. (24)

We note that this test is very similar to (12). More specifically,
if ux̄ is dual feasible (thus aT

` ux̄ ≤ λ), (24) leads to

aT
` ux̄ < λ−

√
2
µgap(x̄, x̄, ū) =⇒ ∀(x?, x?) ∈ X ? : x?` = 0.

(25)

Quite interestingly, this test is structurally equivalent to (12).
The two tests differ only in that the two dual points involved
in (25) (namely ux̄ and ū) need not be linked. Moreover, (25)
can be regarded as a generalization of (10) which holds for
any primal-dual feasible couple (x̄, x̄, ū). In particular, if
(x̄, x̄, ū) is primal-dual optimal then gap(x̄, x̄, ū) = 0 and
(25) reduces to optimality condition (10).

V. EXAMPLE: SCREENING FOR SPARSE SVM
We consider the following classification problem to illus-

trate the performance of our screening procedure:

min
(x,x)∈Rn

+×R
1T
m[1m − diag(y)Px− yx]+ + λ1T

nx (26)

where [·]+ , max(0, ·) and is applied component-wise to
vector inputs. The rows of P ∈ Rm×n represent data points
and the elements of y ∈ {−1,+1}m the corresponding labels.
Problem (26) is often referred to as “sparse support vector
machine classification” and has been considered in many
contributions of the literature, see e.g., [4, 24].

Problem (26) can be written as a particular instance of (2)
with the following identifications:

A = −diag(y)P c = 1m
b = −y f = 1T

m[·]+.
(27)

The Fenchel conjugate of f is equal to

f∗(u) = I{0m ≤ u ≤ 1m}, (28)

see e.g., [23, Section 4.4.3], and the dual problem of (26) thus
takes the form:

d? = max
u∈Rm

−1T
mu s.t.


−1m ≤ u ≤ 0m

−PTdiag(y)u ≤ λ1n
yTu = 0.

(29)
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Figure 1. Percentage of zeros in the minimizers of (26) identified by the screening tests as a function of the duality gap attained by the couple (x̄, x̄, ū)
used in the tests. The results are averaged over 100 problem instances. Blue: El Ghaoui et al.’s test [7]; Red: our region-free test (17).

Hereafter, we assess numerically the effectiveness of our
region-free screening procedure (17) for problem (26).2 The
minimization over x` in (17) particularizes as

min
x`∈R

1T
m[r̄− diag(y)p`x`]+ + λ(x` + x̄`)

where r̄ , 1m−Pdiag(y)x̄−yx̄. This problem is tantamount
to finding the minimum of a one-dimensional piece-wise linear
function and can be solved in O(m logm) [7, Appendix B.1].

We compare our screening method with the test proposed
by El Ghaoui et al. in [7, Equation (5)]. This test has the same
order of complexity as our proposed method and is (to the best
of our knowledge) the only safe screening procedure dealing
with problem (26). In particular, since f∗ is convex but even
not strictly so, the GAP screening procedure does not apply
here. Moreover, other methods of the literature dealing with
safe screening for sparse support vector machine classification
either consider screening for data points (rather than features),
see e.g., [25–27], or add an extra quadratic regularization term
to enforce strong convexity of the cost function, see e.g., [28].

Figure 1 represents the percentage of zeros of the minimiz-
ers of (26) identified by the two screening tests. The results are
plotted as a function of the range of duality gap (in logarithm)
attained by the couples (x̄, x̄, ū) used in the test. The entries of

2The research presented in this paper is reproducible. Code is available at
https://gitlab.inria.fr/cherzet/region-free-screening.

P are generated as i.i.d realizations of a zero-mean Gaussian
distribution and its columns are normalized to one. The results
are averaged over 100 problem instances. The top and bottom
rows respectively correspond to (m,n) = (128, 64) and
(m,n) = (64, 128).

For the sake of simplicity, we focus on the case where
1T
my = 0 (that is there are as many labels “+1” and “−1”).

Under this hypothesis, we have from (6)-(8) that (x?, x?) =
(0n, 0) is the unique solution of (26) if and only if

λmax , ‖[PTdiag(y)1m]+‖∞ ≤ λ.

In our simulation, we thus consider values of λ which are
fractions of λmax: λ/λmax ∈ {0.25, 0.5, 0.75}.

The primal and dual feasible points used in the tests are
generated as follows. For each problem instance, we solve
(26) to machine-precision with the interior-point method of
Matlab function linprog. The iterates of this method serve
to define the primal points (x̄, x̄) used in our screening test.
For each (x̄, x̄), we build a dual feasible point ū by “dual
scaling” as suggested in [7, Section 3.3].

We see from Figure 1 that the proposed test outperforms
El Ghaoui’s strategy in almost all the considered operating
regimes. As already noticed for other problems in the
literature, El Ghaoui’s method performs correctly for high
values of λ/λmax but its performance rapidly degrades when
this ratio decreases. For example, when λ/λmax = 0.25 El
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Ghaoui’s test was not able to detect any zero of the solutions
in the two setups considered in our simulations. Although the
performance of our method also deteriorates when λ/λmax

becomes smaller, our test can still safely identify a significant
proportion of zeros in most operating regimes.

VI. CONCLUSIONS

In this paper, we presented a new framework for safe
screening. Unlike other methods of the literature, the
construction of our test does not require the identification
of a safe region of the dual space. If some strong-convexity
hypothesis on the conjugate of the primal function holds,
we emphasized that the state-of-the-art “GAP sphere test”,
proposed by Fercoq et al., can be recovered as a particular
case of our method. Our framework does however not require
any strong-convexity assumption and therefore applies to
more general families of problems. As an illustrative example,
we applied our methodology to design an effective screening
test for the well-known “sparse support vector machine
classification” problem. As far as our simulation setup is
concerned, we showed that the proposed screening procedure
clearly outperforms the screening method originally proposed
by El Ghaoui et al.
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