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Abstract— In this paper a new distributed off-policy Actor-
Critic algorithm for reinforcement learning is proposed. It
is composed of the Gradient Temporal Difference GTD(1)
algorithm at the Critic stage, and a complementary consensus-
based exact policy gradient algorithm at the Actor stage,
derived from the global objective in the form of a sum of
weighted local state-value functions. Weak convergence of the
algorithm to the invariant set of a corresponding attached
ODE is demonstrated under mild conditions. An experimental
verification of the algorithm properties is presented, showing
that the algorithm can represent an efficient tool for practice,
enabling parallel execution and fusion of local exploration
spaces.

I. INTRODUCTION

Reinforcement learning (RL) has become a widely ac-
cepted tool for decision making in unknown and stochastic
environments (see e.g. [1], [2]). The existing RL algorithms
are often based on function approximation, reducing the
learning problem to finding optimal parameter values of
lower dimensions than the state space, using either on-
policy or off-policy scenario [3]–[5]. The so-called Actor-
Critic (AC) methods have appeared as a consistent response
to the requirements for approximate dynamic programming
optimization [6]–[9]. They are composed of a value function
estimator (Critic) under the given policy, and a policy
function estimator (Actor) aimed at improving the policy
function parameters (see e.g. [6]–[8]).

In this paper, we focus on a decentralized and distributed
AC methods in the form of network of agents communi-
cating among themselves in real-time in order to achieve
an agreement on the optimal policy. In general, distributed
multi-agent algorithms are of great importance nowadays
due to their fundamental role in diverse signal processing
and control problems, especially within the scope of Cyber-
Physical Systems (CPS), Internet of Things (IoT) and Wire-
less Sensor Networks (WSN) (see e.g. [5], [10]–[12] and
references therein). In particular, distributed AC algorithms
have been treated in [13]–[16], but within different settings.
Compared to our approach, [13], [15] did not treat the
case of strict information structure constraints, while in
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[14], [16] restrictive on-policy settings have been assumed.
We start from a finite set of Markov Decision Processes
(MDPs), assigned to the corresponding agents, characterized
by finite state and action spaces, transitional probability
functions and locally generated random rewards. We assume
the off-policy scenario with strict information structure con-
straints, and propose a new AC algorithm in which each
agent applies a local behavior policy and generates a linear
approximation for a predefined target policy (Critic), and
implements iteratively the exact policy gradient algorithm,
explicitly derived from the algorithm implemented at the
Critic stage, providing improved policy parameters (Actor).
A dynamic consensus scheme is applied at the Actor stage,
asymptotically providing agreement on the policy parameters
[14], [16]. Using the gradient temporal-difference algorithm
GTD(1) [2], [4] at the Critic stage, a new corresponding
distributed policy gradient algorithm is obtained formulating
the global objective as a sum of weighted local state-value
functions. The whole proposed multi-agent algorithm is new,
extending the approach in [9] related to the single-agent case.
A rigorous convergence analysis is provided, proving, under
a set of nonrestrictive conditions, that the proposed algorithm
weakly converges to the invariant set of an asymptotic
ordinary differential equation (ODE). As a prerequisite, the
Feller-Markov properties are proved for the new algorithm at
the Actor stage. Illustrative experimental results demonstrate
that the proposed algorithm represents an efficient tool for
real problems in distributed intelligent signal processing and
control.

The paper is organized as follows. Section II contains
the problem formulation and definition of the main criteria.
Section III is devoted to the Critic stage, while Section IV
contains the formulation of the entire AC algorithm. Section
V is devoted to the weak convergence proof of the algorithm,
paying special attention to the trace variables. In Section VI
illustrative simulation results are provided.

II. PROBLEM FORMULATION

Consider a set of Markov Decision Processes MDP(i), i =
1, . . . , N , characterized by common finite sets of states S
and actions A, probability P (s′|s, a) (to move to state s′ ∈
S from state s ∈ S by applying action a ∈ A) and the
random rewards Ri(s, a, s′), characterized by the distribution
p(·|s′, a, s), with the expectation r(s′, a, s) [2].

Communications between the agents are represented by
a strongly connected digraph G = {N , E}, where N is
the set of nodes (agents) and E the set of directed arcs
representing inter-node communications. Let AG be the
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constant adjacency matrix, and Ni ⊂ N the in-neighborhood
of node i [11], [17], [18].

The agents learn from data acquired by interacting with
their local environments and communicating among them-
selves. In the on-policy scenario, agent i at time t executes
the action ait ∼ πi(·|sit), where πi : S × A → [0, 1] is the
target policy function. As a consequence, the environment
of agent i changes the state to sit+1 and produces a random
reward Ri

t+1, i = 1, . . . , N [2]. The local state value
functions under policy πi are defined by

V πi

(s) = Eπi

Ri
t+1 +

∞∑
j=1

j∏
k=1

γit+kR
i
t+j+1|sit = s

 ,

(1)
with the discount factors γit+k = γ(sit+k) ∈ [0, 1],
where Eπi{·} is the expectation over data generated by the
Markov chains induced by πi in MDP(i), i = 1, . . . , N .
If V i = [V i(s1) · · ·V i(s|S|)]

T , the Bellman operator is
defined as T (πi)V i = rπ

i

+ Pπi

ΓV i, where Pπi

(s′|s) =∑
a∈A π

i(a|s)P (s′|s, a) is the |S|×|S| local state transition
matrix, Γ an |S| × |S| diagonal matrix with γ(s) at the
diagonal and rπ

i

an |S|-vector composed of rπ
i

(s), s =
s1, . . . , s|S|, the one stage expected rewards [2], [19]. Under
standard MDP assumptions [19], the solution of the equation
V i = T (πi)V i is unique and given by V i = V πi

.
According to the AC methodology [9], the first goal of

every agent i is to generate, using the local MDP obser-
vations, an approximation of V πi

(s) by Vθi(s) = θiTφ(s),
which is linear in the parameter vector θi, where φ(s) ∈ Rd

is a feature vector, satisfying d << |S|. Policies πi are
also parameterized as πi = πwi , where wi ∈ Rn are
policy parameter vectors, n << |S|, so that the main
goal is to is to learn wi using local observations and inter-
agent communications in order to achieve an overall policy
improvement.

In this paper we assume the off-policy scenario, in which
each agent interacts with its environment using its local
behavior policy πi

b. Introducing the importance ratios ρit =
πwi(ait|sit)/πi

b(a
i
t|sit), the following modification of (1) is

obtained: V πwi (s) = Ei{ρit[Ri
t+1 + γit+1V

πwi (sit+1)]|sit =
s}, where Ei{·} is the mathematical expectation w.r.t. dib(s),
the stationary distribution of the local Markov chain induced
in MDP(i) by πi

b [19].
We adopt the following standard assumptions:
(A1) a) Pπi

is such that I − Pπi

Γ is nonsingular;
b) Pπi

is irreducible and such that
∀s, s′ ∈ S , P

πi
b

ss′ = 0 ⇒ Pπi

ss′ = 0;
for all wi ∈ Rn, i = 1, . . . , N .

Formally, we write V θi

= Φθi, where Φ ∈ R|S|×d is a
feature matrix whose s-th row is the feature vector φT (s).

(A2) a) the column vectors of Φ are linearly independent,
b) all the feature vectors φ(s) are bounded and have a unit
feature value of 1 as their d-th element [9].

We define the following local criteria for policy evaluation

J i(wi) =
∑
s∈S

dib(s)V
i
θi(s) = θiTEi{φi

t}, (2)

where θi = θi(wi) and φi
t = φ(sit). Let

J(w1, . . . , wN ) =
∑
i

ciJ i(wi), (3)

where ci ∈ R+ are a priori chosen weights, so that the
overall goal is to find

w̄ = Argmaxw{
∑
i

∇wiJ(w1, . . . , wN ) = 0|w1=···=wN=w}.

III. CRITIC

In the Critic part the agents generate θi iterates indepen-
dently, using locally available data, i = 1, . . . , N . Although
any type of temporal-difference algorithms can be applied,
we follow an idea from [9] and reduce the choice to the
GTD(1) algorithm, due to the possibility to construct its
complementary algorithm at the Actor stage based on exact
policy gradients derived from J(w1, . . . , wN ).

A. Algorithm GTD(1)

Introducing the bootstrapping parameters λi, we come to
the generalized Bellman operators T (πi,λi) [20]. The local
gradient TD-algorithms (GTD(λ)) are generated using the
objective function J i

GTD(θi) = 1
2∥Π

i(T (πi,λi)V i
θi −V i

θi)∥2di
b
,

where Πi is the projection operator onto the approxima-
tion space LΦ w.r.t. the weighted Euclidian norm ∥ · ∥di

b

(recall (A2)) [19]. For λi = 1, we have T (πi,1)V i =
(I − Pπi

Γ)−1rπ
i

for any V i ∈ R|S|. The locally optimal
parameter vectors θ̄i are solutions of the linear equations

∇θiJ i
GTD(θi)|λi=1 = −Ci

GTDθ
i + biGTD = 0, (4)

where Di
b = diag{dib}, Ci

GTD = ΦTDi
bΦ and biGTD =

ΦTDi
b(I − Pπi

Γ)−1rπ
i

, i = 1, . . . , N .
The statistical form of (4) is Ei{ρitδiteit} = 0, where

δit = Ri
t+1 + γit+1θ

iT
t φi

t+1 − θiTt φi
t represents the temporal

difference and eit = φi
t + γitρ

i
t−1e

i
t−1 the trace vector

(ei−1 = 0), while θit denotes the estimate of θi at time t. The
corresponding local parameter iterates, denoted as AlgC, are

θit+1 = θit + αi
tρ

i
tδ

i
te

i
t, (5)

where αi
t > 0 is the step size (to be specified later).

IV. ACTOR

The algorithm for the Actor part will be derived below
from N GTD(1) algorithms implemented in the Critic part.
The resulting Actor part, consists of N corresponding policy
gradient algorithms interconnected through a dynamic con-
sensus scheme ensuring asymptotic agreement on the optimal
policy parameters.

A. Policy Gradient

We start from ∇wiEi{ρitδiteit} = 0 and obtain an expres-
sion for ∇wiθiT according to [9]. The local policy gradient
obtained from (2) is given by

∇wiJ i(wi) = ∇wiθiTEi{φi
t} (6)

= Ei{ρitδit[f it∇wi log πwi(ait|sit) +∇wieiTt gi]},
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where hi = (HiT )−1Ei{φi
t}, Hi = Ei{ρit(φi

t−γiφi
t+1)e

iT
t }

and f it = eiTt hi. We also have

Ei{ρit(φi
t − γit+1φ

i
t+1)f̂

i(sit)} = Ei{φi
t}, (7)

where f̂ i(s) = Ei{f it |sit = s} = Ei{eit|sit = s}Thi.
In general, implementation of the policy gradient (6) can

be faced with problems of generating f it and (∇wieit)h
i.

However, when the Critic part uses GTD(1), the solution
becomes elegant.

Lemma 1 ( [9]): Under (A1) and (A2), for AlgC defined
by (5), the solution of (7) is defined as f̂ i(s) = E{f it |sit =
s}, where f it = 1 + γitρ

i
t−1f

i
t−1, t ≥ 0, f i−1 = 0; also,

the elements of gi are zero except the d-th element which is
equal to 1.

Then, we have the following statistical form for the policy
gradient algorithm ∇wiJ i(wi) = limt→∞Ei{ρitδitẽit} = 0,
where ẽit = f it∇wi log πwi(ait|sit) + γitρ

i
t−1ẽ

i
t−1, t ≥ 0,

ẽi−1 = 0.

B. Consensus Based Actor-Critic Algorithm

Using the above derivations, we propose the following
novel distributed consensus-based AC algorithm consisting
of: 1) Critic part (AlgC), in the form of N independent
recursions (5); and 2) Actor part (AlgA), defined by the
following iterates

w̃i
t = wi

t + βi
tρ

i
tδ

i
tẽ

i
t, wi

t+1 =
∑
j∈Ni

aijt w̃
j
t , (8)

where At = [aijt ], i, j = 1, . . . , N , aijt ≥ 0, is a row-
stochastic matrix (∀t ≥ 0), with aijt = 0 for all (j, i) /∈
N . AlgA from (8) is composed of two parts: a) update of
wi

t using the currently observed local trajectory tuple, and b)
convexification of the estimates from the node neighborhood,
aimed at achieving convergence to consensus, when w̄1 =
... = w̄N = w̄. The step size sequence {βi

t} satisfies
βi
t << αi

t, ∀t ≥ 0, implying two different time scales (see
e.g. [21]).

V. CONVERGENCE ANALYSIS

A. AlgC

We first recapitulate some results on the convergence of
GTD(λ)-based algorithms [4], [19].

According to [19], [22], {Zi
t} = {(sit, ait, eit)}, t ≥ 0,

forms a weak Feller Markov chain on S×A×Rd, bounded
in probability, and having a unique probability measure ζi.
For each Zi

0 the sequence of the averages 1
t

∑t−1
k=0 f(Z

i
k)

converges in mean and a.s. to Eζi{f(Zi
0)} for any con-

tinuous function f . Let gi(θi, ξi) = ρi(s, a)δ̄(θi, s, a, s′)ei,
where ξi = (s, a, s′, ei), δ̄(θi, s, a, s′) = r(s, a, s′) +
γ(s′)φT (s′)θi − φT (s)θi and r(s, a, s′) denotes the one-
step expected reward. Notice that δit = δ̄(θit, s

i
t, a

i
t, s

i
t+1) +

ωi
t+1, where ωi

t+1 is a zero mean sequence modeling ran-
domness in Ri

t+1. Following [19], we introduce ḡi(θi) =
Eζi{gi(θi, ξi0)}, and obtain ḡi(θi) = −Ci

GTDθ
i + biGTD, in

accordance with (4).
(A3) Matrix Ci

GTD is nonsingular, i = 1, . . . , N .

Theorem 1 ( [23]): Let (A1)–(A3) hold. For each con-
stant αi > 0 let {θit} be generated by AlgC from any ei−1.
Let {kαi} be a sequence of nonnegative integers such that
αikαi → ∞ as αi → 0. Then there exists a sequence Tαi

with Tαi → ∞ as αi → 0, such that for any δi > 0,

lim
αi→0

supP (θit /∈ Nδi(θ̄
i), some t ∈ [kαi , kαi+Tαi/αi]) = 0,

(9)
where Nδi(·) denotes the δi-neighborhood of an indicated
set and θ̄i = (Ci

GTD)−1biGTD, according to (4).

B. AlgA

At the network level, we introduce Wt = [w1T
t · · ·wNT

t ]T

and W ′
t = [w

′1T
t · · ·w′NT

t ]T and obtain the following global
model:

W ′
t =Wt + βtF̃t(Wt), Wt+1 = (At ⊗ Ip)W

′
t , (10)

where βi
t = βt, F̃t(Wt) = [g̃1Tt · · · g̃NT

t ]T and ⊗ denotes the
Kronecker’s product.

1) Consensus Part: Following [17], [24], we define
Ψ(t|k) = At · · ·Ak for t ≥ k, Ψ(t|t + 1) = IN . Let F̃t be
an increasing sequence of σ-algebras such that F̃t measures
both {Wk, k ≤ t, Ak, k < t}.

(A4) There is a scalar ς0 > 0 such that aiit ≥ ς0, and, for
i ̸= j, either aijt = 0 or aijt ≥ ς0.

(A5) Graph G is strongly connected.
(A6) There are a scalar p0 > 0 and an integer t0 such

that PF̃t
{agent j communicates to agent i on the interval

[t, t+ t0]} ≥ p0, for all t and i, j for which Aij
G ̸= 0.

(A7) There is a N×N matrix Ψ̄ such that E{|EF̃k
{Ψt}−

Ψ̄|} → 0 as |t − k| → ∞, which, according to Lemma 2,
has the form Ψ̄ = [Ψ̂T · · · Ψ̂T ]T , where Ψ̂ = [ψ̄1 · · · ψ̄N ]T .

(A8) Sequence {At} is independent of the processes in
MDP(i), i = 1, . . . , N .

2) Properties of the Trace Variables: Introduce:
(A9) For every (s, a) ∈ S ×A the mappings wi 7−→ πwi

are twice differentiable, i = 1, . . . , N .
(A10) supwi,si,ai ∥∇ log πwi(ai|si)∥ < ∞ and

∇ log πwi(ai|si) has a bounded derivative ∀(si, ai) ∈ S×A.
Lemma 2: Let x̃it = [ẽiTt , f it ]

T . Then, for any given x̃i−1:
a) supt≥0E{∥x̃it∥} <∞, and b) the zero input response of
x̃it tends to zero a.s.

Proof: The parameter iterates give rise to the following
model

x̃it = γitρ
i
t−1S̃

i
t x̃

i
t−1 + G̃i

t, (11)

where S̃i
t =

[
I ϕit
0 1

]
, G̃i

t =

[
ϕit
1

]
and ϕit =

∇wi log πwi(ait|sit). It is straightforward to verify using (11)
that E{

∏t−1
j=k ∥S̃i

j∥} ≤ Li
1(t − k), 0 < Li

1 < ∞, as
supt ∥ϕit∥ < ∞; also, using [19, Lemmas A.1 and A.2,
Proposition A.1], we find out that for |t − k| large enough
E{E{

∏t−1
j=k γ

i
j+1ρ

i
j |Fk}} ≤ Li

2(σ
i)t−k, where Fk is the σ-

algebra generated by the states up to time t and actions up
to time t − 1, and 0 < Li

2 < ∞ and |σi| < 1. Therefore,
E{∥x̃it∥} ≤ L3t(σ

i)t + L4

∑t
k=1(t − k)(σi)t−k < ∞

(0 < L3, L4 <∞).
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Define

∆i
t = t

t∏
j=1

γijρ
i
j−1 =

t

t− µ

t∏
j=t−µ+1

(γijρ
i
j−1)∆

i
t−µ, (12)

where µ is a positive integer since
∏t

j=1 ∥S̃i
j∥ ∼

t. Assume that µ is chosen in such a way that
E{

∏t
j=t−µ(γ

i
jρ

i
j−1)|Ft−µ} = ((Pπi

Γ)µ1)(sit−µ) < 1 for
all sik ∈ S . Then, ∃t0 > 0 such that for all t > t0
t

t−µE{
∏t

j=t−µ(γ
i
jρ

i
j−1)|Ft−µ} ≤ 1, so that the convergence

theorem for nonnegative supermartingales can be applied,
i.e. ∆i

t → ∆i
∞ a.s. As E{∆i

t} →t→∞ 0, we conclude that
∆i

∞ = 0 a.s. Hence, the result follows.
From Lemma 2 and the results from [22, Subsection 3.1]

it follows that {Z̃i
t} is a Feller Markov chain bounded in

probability and having a unique probability measure ζ̃i, and
that for each Z̃i

0 the sequence 1
t

∑t−1
k=0 f(Z̃

i
k) converges in

mean and a.s. to Eζ̃i{f(Z̃i
0)} for any continuous f .

3) Convergence Proof: Let g̃i(wi, θ̄i(wi), ξ̃i) =

ρi(s, a)˜̄δ(θ̄(wi), s, a, s′)ẽi(wi), where ξ̃i =
(s, a, s′, x̃i). We also have g̃it = g̃i(wi

t, θ̄
i(wi

t), ξ̃
i
t),

¯̃gi(wi, θ̄i(wi)) = Eζ̃i{g̃i(wi, θ̄i(wi), ξ̃i0)}, and let
¯̃Ft(W ) = [¯̃g1(w1, θ1(w1))T · · · ¯̃gN (wN , θN (wN ))T ]T .

Theorem 2: Let (A1)–(A10) hold. Let Wt be generated
by (8) with βt = β > 0. Then, W β(τ) = Wt for τ ∈
[tβ, (t+ 1)β), τ ∈ R+, is tight and converges weakly when
β → 0 to W (τ) = [w(τ)T · · ·w(τ)T ]T , τ ∈ R+, where
w(τ) is generated by

ẇ =

N∑
i=1

ψ̄ici ¯̃gi(w, θ̄i(w)), w(0) = w0, (13)

and θ̄i(w) is a unique solution of (4). There exists a sequence
Tβ with Tβ → ∞ as β → 0, such that for any δ > 0,

lim
β→0

supP (wi
t /∈ Nδ(W̄), some t ∈ [kβ , kβ + Tβ/β]) = 0,

(14)
where W̄ is the closure of the set of points w̄ defined by∑N

i=1 ψ̄
ici ¯̃gi(w̄, θ̄i(w̄)) = 0.

Proof Sketch: The proof follows the general line of rea-
soning from [24], [25], including additional technical aspects
from [11], [22], [23] and Lemma 2. The essential part is the
verification that the general assumptions C(3.2) and C(3.3’)
from [24] and A.8.1.11 from [25] hold. According to [24],
the first part of the proof shows that W β(·) is tight. In the
second part, the asymptotic mean ODE (13) is derived using
the arguments from [11], [24], [25]. The third part is directly
related to the convergence points, in accordance with [11]

VI. SIMULATION RESULTS

The simulated MDP environment is assumed to be a
version of the Boyan’s chain which can be used to model
a travel decision making problem (see e.g. [4], [11]), whose
diagram is shown in Fig. 1.

The discount factor is set to γ = 0.9. The (stationary)
policy to be optimized is the probability of the exit action
aexit at state s: π(aexit|s). If aexit is chosen, the probability

�
����

�
�1 2 3 14 15

�
����

Fig. 1. Diagram of the simulated MDP.

of being stuck in a traffic jam is fixed to 0.2, with the reward
r(s, aexit, s′) = −2.5 for all s and s′, while if ah is chosen,
the reward is r(s, ah, s′) = −1 for all s and s′, and the
probability of being stuck grows as 1− 1

s .
10 agents are simulated with a sparse neighbors-based

communication graph. We used the linear function approx-
imation for the critic based on 7-features Gaussian radial
basis representation φi(s) = e−

(s−zi)
2

2σ2 , i = 1, ..., 7, zi ∈
{1, 3, 5, 7, 9, 11, 13}, σ2 = 2. For the actor, we parame-
terize the policy πw(a|s) using the Gibbs parameterization
πw(a|s) = ew

T φp(s,a)/τ∑
a′∈A ew

T φp(s,a′)/τ , where φp(s, a) is a dp-

dimensional feature vector and τ is the “temperature” pa-
rameter to be specified. Since the chain has an absorbing
state we run the algorithms in multiple episodes.

In the first experiment, the agents are individually not able
to find the optimal policy since we restrict their behavior
such that they can visit only (complementary) subsets of the
states (e.g. agent 1 starts in state 7 and stops in state 13, etc.).
Their behavior policies are different with πi(aexit|s) set to
[0.15, 0.24, 0.13, 0.38, 0.55, 0.89, 0.64, 0.97, 0.75, 0.69], re-
spectively. In this experiment we choose tabular policy
features φp(s, a) with dimensionality dp = 15 × 2 (i.e. we
don’t loose any “information”, so that the agents should be
able to converge to the optimal policy). In Fig. 2 the evolution
of the exact value function (exactly calculated in each time
step) corresponding to the agents optimal policy estimates
and averaged over all agents and states, for step sizes αi =
0.02 and βi = 0.0002, and for τ = 1/16, is shown. The
red horizontal line represents the optimal value function. It
can be concluded that the agents collectively successfully
converge to the optimal policy despite the individual state-
visiting restrictions and the critic approximation. This can
also be concluded from Fig. 3 where we show the final value
function approximations obtained by the critics, the exact
value functions corresponding to the final policy estimates
of each agent (which have converged to the same values due
to the actor consensus), as well as the true optimal value
function.

Fig. 2. Experiment 1. Evolution of the exact value function of the agents’
optimal policy estimates averaged over all the agents and states. The red
line is the optimal value.
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Fig. 3. Experiment 1. The exact value functions corresponding to the
final optimal policy estimates obtained by the agents, together with the true
optimal value function and the final value function approximations obtained
by the critics.

In the second experiment, we assume that there are no
restrictions on the agents’ state-visiting possibilities, i.e. they
are all capable to travel from the first to the last state
with positive probability. The agents’ behavior policies are
assumed to be the same as above. However, here we choose
policy features φp(s, a) as binary codes (a unique code for
each state) which lowers dimensionality to dp = 4 × 2 [7];
hence, we do not obtain convergence to the exact optimal
policy as can be seen in Fig. 4, for αi = 0.007 and
βi = 0.0001, and for τ = 1/4. In general, it has been
confirmed in simulations that the rate of convergence and
the variance of the estimates is improved using the proposed
scheme, compared to the local agents working independently
[11].
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Fig. 4. Experiment 2. Evolution of the exact value function of the agents’
optimal policy estimates averaged over all the agents and states. The red
line is the optimal value.

VII. CONCLUSION

In this paper a new distributed off-policy AC algorithm
has been proposed using the GTD(1) algorithm at the Critic
stage, and a complementary exact consensus-based policy
gradient algorithm derived from GTD(1) at the Actor stage,
starting from a global objective in the form of a weighted
sum of local state-value functions. After proving that the
Feller-Markov properties hold for the derived algorithm at
the Actor stage, a proof of the weak convergence of the entire
algorithm to the invariant set of the attached ODE has been
derived. Simulation results demonstrate that the algorithm
can be an efficient tool for practice, enabling parallelization
and complementarity of agent actions (off-policy setting).

Further efforts can be directed towards extensions to multi-
task reinforcement learning problems.
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