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Abstract—An important problem in the field of graph signal
processing is developing appropriate overcomplete dictionaries
for signals defined on different families of graphs. The Cayley
graph of the symmetric group has natural applications in
ranked data analysis, as its vertices represent permutations,
while the generating set formalizes a notion of distance between
rankings. Taking advantage of the rich theory of representations
of the symmetric group, we study a particular class of frames,
called Frobenius–Schur frames, where every atom belongs to
the coefficient space of only one irreducible representation of
the symmetric group. We provide a characterization for all
Frobenius–Schur frames on the group algebra of the symmetric
group which are “compatible” with respect to the generating set.
Such frames have been previously studied for the permutahedron,
the Cayley graph of the symmetric group with the generating set
of adjacent transpositions, and have proved to be capable of pro-
ducing meaningful interpretation of the ranked data set via the
analysis coefficients. Our results generalize frame constructions
for the permutahedron to any inverse-closed generating set.

Index Terms—Graph frame, Cayley graph, permutation group

I. INTRODUCTION

A signal on a graph G is a complex-valued function f on
the vertex set of G. Fixing an ordering {vi}Ni=1 of the vertex
set, a graph signal f can be represented as a column vector
[f(v1), f(v2), · · · , f(vN )]

t in CN , where t denotes the matrix
transpose operation. A major objective of the vibrant field of
graph signal processing is to analyze such signals not only
as vectors in CN , but to take the underlying structure of the
graph G into account. Over the past few years, the problem
of generalizing or adapting classical tools of Fourier analysis
to the context of graph signals has attracted the attention of
many researchers. For a more detailed introduction to graph
signal processing and its applications, see [9], [13], and [14].

An important technique for analyzing signals in general,
and graph signals in particular, is to develop appropriate
overcomplete dictionaries for various classes of signals. This
idea is formalized in the theory of discrete frames. A frame for
a finite-dimensional (or infinite-dimensional separable) Hilbert
space H is a set of vectors {ψx}x∈X indexed by a countable
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set X , such that for some positive real numbers A and B, we
have for every v ∈ H,

A‖v‖2H ≤
∑
x∈X
|〈v, ψx〉|2 ≤ B‖v‖2H. (1)

The constants A and B in (1) are called the lower frame
bound and the upper frame bound respectively, and the
condition number of the frame is defined to be the ratio
c(F) := B/A. Frames provide stable, possibly redundant
systems which allow reconstruction of a signal f from its
frame coefficients {〈f, ψx〉}x∈X . When the frame provides
a redundant representation, reconstruction of a signal is still
possible even when some portion of its frame coefficients are
lost or corrupted. An important class of frames is the class
of tight frames, i.e., frames for which A = B. Compared to
general frames, tight frames exhibit greater numerical stability
when reconstructing noisy signals. Parseval frames are tight
frames in which A = B = 1.

Over the past couple of decades, various methodologies for
constructing frames for graph signals have been investigated.
In [7], Hammond, Vandergheynst and Gribonval define the
graph Fourier transform and apply it to produce wavelet frames
for graphs. Other examples of wavelet-type frames can be
found in [3], [6], [8], [11]. Another significant class of clas-
sical frames are Gabor frames. These frames are constructed
through applications of translation and modulation operators
to a window function. For various constructions of Gabor-
type frames for graph signals, we refer the reader to [1],
[5]. A survey of localized spectral graph filter frames can
be found in [12]. In this paper, we focus our attention to a
particular class of graphs, namely the Cayley graphs of the
symmetric group Sn, and we use the representation theory
of finite groups to construct frames of a “suitable type” for
signals on these graphs. Cayley graphs of Sn have natural
applications in ranked data analysis. The vertex set of such
a graph represents all preference rankings of n objects or
candidates, as each vertex is associated with a permutation
of n items. The choice of the generating set for the Cayley
graph formalizes the idea of distance between rankings in the
context of a ranked voting model. An important example is the
permutahedron, denoted Pn. This is the Cayley graph of Sn
with generating set S of all adjacent transpositions (i, i+ 1).
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In this case, two rankings are considered “close together”
if one ranking can be obtained from the other by switching
candidates that are closer together. In [2], Chen et al. construct
a particular frame for signals on the permutahedron, and show
that the analysis coefficients with respect to this frame are
meaningful in the context of ranked data analysis. Examples of
interpretations of the analysis coefficients include popularity of
candidates, whether a candidate is polarizing, or whether two
candidates are likely to be ranked similarly. In order to obtain
frames which lead to meaningful analysis coefficients, they
build frames in which every atom belongs to the coefficient
space of one irreducible representation only. Such frames also
allow for interpretation of symmetry and smoothness in the
ranked data set. Structurally speaking, these frames satisfy the
favourable property of being compatible with the coefficient
spaces of representations of Sn; this motivates the following
definition.

Definition I.1. Let n ∈ N. A frame {ψi}mi=1 for C[Sn] is
called a Frobenius–Schur frame if each atom ψi belongs to one
orthogonal component of the Frobenius–Schur decomposition
as stated in Theorem II.1 (iii).

This article is dedicated to the construction of Frobenius–
Schur frames for signals on all Cayley graphs on Sn,
with any choice of the inverse-closed generating set (Theo-
rem III.6). Namely, we provide a characterization for all pos-
sible Frobenius–Schur frames on C[Sn] which are compatible
with the generating set S (see Definition III.1). As our method
relies heavily on the concrete form of the irreducible repre-
sentations of the group, we focus our attention on Sn, given
the rich literature on the concrete forms of representations of
Sn.

We believe that our results can be used for analysis of
ranked data sets in a wide range of settings, as taking different
generating sets allows us to model “closeness” of ranked
data in a variety of ways. Heuristically-speaking, it may
be advantageous to define rankings to be closer together if
one ranking can be obtained from the other by switching
candidates that are near each other in, say, the top half of
the ranking. This could be useful in a ranked vote where
only the first place candidate is selected as the “winner”, and
the analysis is focused on candidates placed higher up in the
preference rankings. As another example, the generating set of
all transpositions allows for a more highly connected notion
of closeness where rankings are close together if any two
candidates are switched.

This paper is organized as follows. In Section II, we
collate the necessary background on Cayley graphs and the
representation theory of Sn. In Section III, we define the
notion of frame compatibility with a generating set and present
our main results for constructing Frobenius–Schur Frames for
L2(Sn). In Section IV we provide an explicit example of
Frobenius–Schur Frames for L2(S3) that are compatible with
the generating set of adjacent transpositions.

II. NOTATIONS AND BACKGROUND

Throughout this article, we use G to denote a finite (not
necessarily Abelian) group of size N . The space of all signals
f : G → C is denoted by C[G]. The group algebra C[G],
equipped with inner product 〈f, g〉 =

∑
x∈G f(x)g(x), is

a Hilbert space isometrically isomorphic to CN , which we
denote by L2(G). Given that a signal f : G → C in
C[G] can be viewed as a vector in the vector space CN ,
for the remainder of the paper, we refer to C[G] and L2(G)
interchangeably, where we view f as a function in the context
of C[G] and as a vector in the context of L2(G).

Let G be a finite group, and S ⊆ G be an inverse-closed
subset of G (i.e., if x ∈ S then x−1 ∈ S). The Cayley
graph G(G, S) encodes the group structure of G with respect
to S. Namely, the vertex set of G(G, S) is G, and vertices
x, y ∈ G form an edge if x−1y ∈ S. The set S is called the
generating set of the Cayley graph G(G, S). The fact that the
generating set is inverse-closed guarantees that the associated
Cayley graph is not directed.

In the next subsection, we provide the necessary background
for the representation theory of finite groups and their associ-
ated function spaces in general. We then focus our attention
to these concepts for Sn.

A. The Frobenius–Schur Decomposition

A unitary representation of G of dimension d is a group
homomorphism π : G → Ud(C), where Ud(C) denotes the
(multiplicative) group of unitary matrices of size d. Here, we
restrict our attention to unitary representations. This is non-
consequential as every representation of a finite group can be
turned into a unitary representation by a change of inner prod-
uct on the representation space (see for example [10, Section
1.3]). For a given (unitary) representation π, a subspace W of
Cd is called π-invariant if π(g)W := {π(g)ξ : ξ ∈W} ⊆W
for all g ∈ G. A representation π is called irreducible if {0}
and Cd are its only closed π-invariant subspaces. Every unitary
representation of a finite group completely decomposes into a
direct sum of its irreducible representations. Two representa-
tions π and σ of G are called unitarily equivalent if there
exists a unitary matrix U such that U−1π(g)U = σ(g) for
all g ∈ G. We let Ĝ denote the collection of all (equivalence
classes of) irreducible unitary representations of G.

For an arbitrary π ∈ Ĝ of dimension dπ , and vectors ξ, η ∈
Cdπ , we define the coefficient function associated with the
representation π and the vectors ξ, η as follows:

πξ,η : G→ C, πξ,η(g) = 〈π(g)ξ, η〉, ∀g ∈ G. (2)

When the group G is ordered as G = {g1, . . . , gN}, we can
represent πξ,η as a vector in CN , namely,

πξ,η =
[
〈π(g1)ξ, η〉, . . . , 〈π(gN )ξ, η〉

]t
.

Given a standard orthonormal basis {ei}dπi=1 for Cdπ , the
coefficient functions

πi,j(x) := πei,ej (x) = 〈π(x)ei, ej〉, i, j = 1, . . . , dπ
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are the entries of the matrix of π(x) represented in the same
basis.

Coefficient functions, and the subspaces generated by them,
play a central role in the harmonic analysis of non-Abelian
groups. Let π ∈ Ĝ and 1 ≤ i ≤ dπ be fixed. Define

Eπ,i =
{
πξ,ei : ξ ∈ Cdπ

}
, (3)

the space of all coefficient functions of π, fixed in the second
entry. It is easy to observe that for each i, the set Eπ,i forms
a right-invariant subspace of CN , that is, for every f ∈ Eπ,i
and y ∈ G, the map fy : G → C defined as fy(x) = f(xy)
also belongs to Eπ,i. The well-known theorem of Frobenius
and Schur provides a direct sum decomposition of L2(G) into
subspaces of the form Eπ,i.

Theorem II.1 (Frobenius–Schur decomposition). Let G be a
finite group, and π, σ be irreducible unitary representations of
G.

(i) If π and σ are not unitarily equivalent then Eπ,i ⊥ Eσ,j
for all 1 ≤ i ≤ dπ and 1 ≤ j ≤ dσ .

(ii) Every orthonormal basis {ej}dπj=1 for Cdπ leads to an
orthonormal basis for Eπ,i given by{√

dπ
|G|

πj,i : j = 1, .., dπ

}
. (4)

(iii) L2(G) =
⊕

π∈Ĝ
⊕

1≤i≤dπ Eπ,i, with the associated
orthonormal basis{

φπi,j :=

√
dπ
|G|

πi,j : i, j = 1, ..., dπ, π ∈ Ĝ

}
.

We call Eπ,i the orthogonal subspaces of the Frobenius–
Schur decomposition.

B. Representations of Sn
In this section, we present the foundational tools for de-

scribing irreducible representations of Sn, focusing on only the
background necessary to our construction of Frobenius–Schur
frames for L2(S3) in Section IV. Irreducible representations
of Sn are in one-to-one correspondence with the partitions
λ ` n of n. A partition λ of the integer n, denoted λ ` n, is
a decomposition of n into a sum of positive integers. Equiva-
lently, λ : (λ1, .., λk) is a partition of n if λ1 ≥ . . . ≥ λk and
n =

∑k
i=1 λi. A partition λ : (λ1, .., λk) can be represented

by a Young diagram with shape λ : (λ1, .., λk), that is, a
Young diagram that contains λi boxes in its ith row, for every
1 ≤ i ≤ k. As a result, every Young diagram of size n
corresponds with an irreducible representation of Sn. A further
extension of the Young diagram is the Young tableau, a Young
diagram on n blocks where each block is uniquely labeled
from the set {1, 2, . . . , n−1, n}. We say that a Young tableau
is in standard form if the labels in each row increase from
left to right and the labels in each column increase from
top to bottom. Young tableaux provide significant concrete
information about the irreducible representations of Sn. For
example, the number of standard Young tableaux for a given

partition λ ` n is the dimension of the associated irreducible
representation of Sn. We refer the reader to [4] for more details
on the information that can be retrieved from Young tableaux,
such as formulas regarding the characters and the concrete
matrix form of the representations.

III. FROBENIUS–SCHUR FRAMES FOR Sn
Throughout this section, let G be the Cayley graph of Sn

with a fixed generating set S ⊆ Sn. We construct Frobenius–
Schur frames for L2(Sn) that are “compatible” with the
generating set S. For a representation π of Sn, we define
π(S) =

∑
a∈S π(a). Since S is inverse-closed and π is unitary,

the matrix π(S) is self-adjoint. For the remainder of the paper,
we fix an ordering of the elements of Sn, and identify elements
of L2(Sn) with vectors in C|Sn|, when needed.

Definition III.1. A Frobenius–Schur frame {φi}mi=1 of L2(Sn)
is said to be compatible with S if for every atom φi there exists
an irreducible representation π : Sn → Udπ (C) and an index
1 ≤ j ≤ dπ such that,

φi(z) = Rπ,j(z)X, z ∈ Sn (5)

where Rπ,j(z) is the jth row of π(z), and X is an eigenvector
of π(S).

Let π be an irreducible representation of Sn of dimension
dπ , and let 1 ≤ i ≤ dπ be fixed. For λ ∈ R, define

Zπ,i,λ :=


dπ∑
k=1

xkπk,i :

 x1
...
xdπ

 ∈ Eλ(π(S))

 , (6)

where Eλ(π(S)) is the λ-eigenspace of π(S). Since πk,i
belongs to Eπ,i for every k = 1, . . . , dπ , Zπ,i,λ ⊆ Eπ,i. Also,
note that if λ is not an eigenvalue of π(S), then Zπ,i,λ = {0}.

Lemma III.2. A frame for L2(Sn) is a Frobenius–Schur frame
compatible with S iff every frame atom belongs to Zπ,i,λ for
some π ∈ Ŝn, some real scalar λ, and some index i.

Proof. The forward direction follows easily from direct calcu-
lations. For the converse, suppose that for a given frame, every
atom belongs to Zπ,i,λ for some π ∈ Ŝn, some real scalar λ,
and some index i. Since Zπ,i,λ ⊆ Eπ,i, the frame must be a
Frobenius–Schur frame. The fact that the frame is compatible
with S trivially follows from the definition of Zπ,i,λ.

The sets Zπ,i,λ are isomorphic to the λ-eigenspace of π(S).

Lemma III.3. With notation as in (6), we have:
(i) The set Zπ,i,λ is a subspace of Eπ,i ⊆ L2(Sn).

(ii) Zπ,i,λ and Eλ(π(S)) are isomorphic as linear spaces via
the map Θπ,i,λ : Eλ(π(S))→ Zπ,i,λ, defined by

Θπ,i,λ([x1 . . . xdπ ]t) =

dπ∑
k=1

xkπk,i. (7)

So, the subspace Zπ,i,λ is the trivial subspace containing
only 0 ∈ L2(Sn) iff λ is not an eigenvalue of π(S).
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(iii) The map Θ̃π,i,λ :=
√

dπ
n! Θπ,i,λ is an isometry.

(iv) If (π, i, λ) 6= (π′, i′, λ′), then Zπ,i,λ and Zπ′,i′,λ′ form
orthogonal subspaces in L2(Sn).

Proof. Part (i) holds, since Eλ(π(S)) is a linear sub-
space of Cdπ . To prove part (ii), note that Θπ,i,λ is
clearly a linear surjective map. To show injectivity, assume
Θπ,i,λ([x1 . . . xdπ ]t) =

∑dπ
k=1 xkπk,i = 0. Since {πk,i : 1 ≤

k ≤ dπ} is a linearly independent subset of L2(Sn), we get
xk = 0 for all k, and Θπ,i,λ is injective. Thus, Θπ,i,λ is a linear
isomorphism. As a consequence, Θπ,i,λ keeps the dimension
unchanged; this implies the last statement.

To prove (iii), let X = [x1 . . . xdπ ]t, Y = [y1 . . . ydπ ]t be
arbitrary elements of Eλ(π(S)). By the Schur orthogonality
relations (Theorem II.1), we have〈

Θ̃π,i,λ(X), Θ̃π,i,λ(Y )
〉

=
dπ
n!

dπ∑
k,`=1

xky` 〈πk,i, π`,i〉L2(Sn)

=
dπ
n!

dπ∑
k=1

xkyk
n!

dπ
=

dπ∑
k=1

xkyk = 〈X,Y 〉Cdπ .

To prove part (iv), suppose (π, i, λ) 6= (π′, i′, λ′). Since
Zπ,i,λ ⊆ Eπ,i and Zπ′,i′,λ′ ⊆ Eπ′,i′ , by Theorem II.1, if π 6= π′

or i 6= i′, the two spaces Zπ,i,λ and Zπ′,i′,λ′ are orthogonal.
Now suppose that π = π′ and i = i′, but λ 6= λ′. We have
that Eλ(π(S)) and Eλ′(π(S)) are orthogonal subspaces of
Cdπ . So for X ∈ Eλ(π(S)) and Y ∈ Eλ′(π(S)), we have〈

dπ∑
k=1

xkπk,i,

dπ∑
`=1

y`π`,i

〉
L2(Sn)

=

dπ∑
k,`=1

xky`〈πk,i, π`,i〉

=

dπ∑
k=1

xkyk
dπ
n!

=
dπ
n!
〈X,Y 〉Cdπ = 0.

Theorem III.4. For every π ∈ Ŝn and 1 ≤ i ≤ dπ , we have
Eπ,i =

⊕
λ∈σ(π(S)) Zπ,i,λ.

Proof. The matrix π(S) is self-adjoint (i.e., π(S)∗ = π(S)),
and as a result it is diagonalizable. So, one can build an
orthonormal basis of Cdπ consisting of eigenvectors of π(S).
In other words, we can write

Cdπ =
⊕

λ∈σ(π(S))

Eλ(π(S)), (8)

where σ(π(S)) denotes the spectrum of the matrix π(S).
Now, consider an arbitrary element πξ,i ∈ Eπ,i, and write
its linear expansion πξ,i =

∑dπ
k=1 xkπk,i. Using (8), the

vector X = [x1, . . . , xdπ ]t ∈ Cdπ can be written as a linear
combination X =

∑
λ∈σ(π(S)) Yλ, with Yλ ∈ Eλ(π(S)).

Denoting the ith row of π(z) by Rπ,i(z), for every z ∈ Sn,
we have πξ,i(z) = (Rπ,i(z))X =

∑
λ∈σ(π(S))Rπ,i(z)Yλ.

Let (yλ)k denote the kth component of Yλ. For each λ, we
have Rπ,i(z)Yλ =

∑dπ
k=1(yλ)kπk,i belongs to Zπ,i,λ. So, we

conclude that
Eπ,i ⊆

∑
λ∈σ(π(S))

Zπ,i,λ.

On the other hand, Eπ,i ⊇
∑
λ∈σ(π(S)) Zπ,i,λ is a trivial con-

sequence of the definition of Zπ,i,λ. Finally, by Lemma III.3
(iv), this sum is a direct sum.

Definition III.5. For π ∈ Ŝn and an eigenvalue λ of π(S),
let Gπ,λ denote the collection of all frames for Eλ(π(S)). We
define Gπ,λ = ∅ if λ is not an eigenvalue of π(S). Elements
of Gπ,λ are denoted by calligraphic font, e.g. F .

Theorem III.6. For every π ∈ Ŝn of dimension dπ and every
eigenvalue λ of π(S), let Fπ,λ1 . . . ,Fπ,λdπ

∈ Gπ,λ be given
frames. Then we have the following.
(i) The collection

Φπ,i =
{

Θ̃π,i,λ(ψ) : ψ ∈ Fπ,λi , λ ∈ σ(π(S))
}

is a frame for Eπ,i, where σ(π(S)) denotes the spectrum
of the matrix π(S).

(ii) The collection Φ =
⋃
π∈Ŝn,1≤i≤dπ Φπ,i is a Frobenius–

Schur frame for L2(Sn), compatible with S.
(iii) Every frame for L2(Sn) which is both Frobenius–Schur

and compatible with S is of the form described in (ii).

Proof. First let 1 ≤ i ≤ dπ , and note that any frame for
Eλ(π(S)) can be lifted, via the map Θ̃π,i,λ, to a frame
for Zπ,i,λ with the same upper/lower frame bounds. That
is, if {φx}x∈X belongs to the frame space Gπ,λ, then
{Θ̃π,i,λ(φx)}x∈X forms a frame for Zπ,i,λ. This is indeed the
case, as Θ̃π,i,λ is an isometric isomorphism (Lemma III.3).
So Φπ,i is just a union of frames for Zπ,i,λ, as λ ∈ σ(π(S))
varies. Using the direct-sum decomposition of Theorem III.4,
this union results in a frame for Eπ,i. This proves (i).

We prove (ii) now. The fact that Φ is a frame for L2(Sn)
follows from part (i) and Theorem II.1, and Φ being a compati-
ble Frobenius–Schur frame follows directly from Lemma III.2,
Lemma III.3 (ii) and the definition of Φ. Finally, part (iii)
follows from the fact that a compatible Frobenius–Schur frame
can be naturally partitioned into frames for Zπ,i,λ. Applying
the map Θ−1π,i,λ to those frames finishes the proof.

The construction in Theorem III.6 allows us to control the
frame bounds as well. We get the following corollary.

Corollary III.7. With notation as in Theorem III.6, suppose
the frames Fπ,λi are Parseval (resp. tight) for all π, i, and λ.
Then Φπ,i is a Parseval (resp. tight) frame for Eπ,i, and Φ is
a Parseval (resp. tight) frame for L2(Sn).

Remark III.8 (Relation with Results in [2]). Our frame
construction relates with the dictionaries given in [2]. Let
π ∈ Ŝn be associated with a partition γ of n. Then the space
Wγ given in [2, Equation (1)] is simply the subspace of C[Sn]
containing all coefficient functions associated with π, namely,
Wγ = ⊕dπi=1Eπ,i. One can verify that the space Zγ,λ as defined
in [2, Proposition 1] is exactly the space Zπ,λ defined as

Zπ,λ =

dπ⊕
i=1

Zπ,i,λ.
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The frame constructed in [2] is therefore a Frobenius–Schur
frame compatible with the specific generating set of all adja-
cent transpositions.

IV. COMPATIBLE FROBENIUS–SCHUR FRAMES FOR L2(S3)

In this section, we provide a recipe to construct Frobenius–
Schur frames for L2(S3) which are compatible with the gener-
ating set S = {(12), (23)}. A more interesting example would
be the construction of Frobenius–Schur frames for L2(Sn)
with n ≥ 4, because some of the associated eigenvalues
will have higher multiplicity. Due to space constraints, we
have chosen to only provide details for L2(S3); these steps,
however, can be used as a guide when dealing with higher n.

We order elements of S3 as follows:
id, (12), (23), (13), (123), (132). From Subsection II-B,
we have three irreducible representations of S3, as there are
only three Young diagrams of size 3 corresponding with the
partitions (1,1,1), (2,1) and (3) respectively:

For the partition (3), the only standard Young tableau is
the rightmost Young diagram labeled with 1, 2, and 3 from
left to right. Therefore, the corresponding representation is 1-
dimensional. The representation associated with this partition
is the trivial representation of S3, denoted by ι, which maps
every element of S3 to 1. The unique coefficient function of
ι is given by ι1,1 = [1, 1, 1, 1, 1, 1]t.

For the partition (2,1), the standard Young tableaux are

1 2
3

1 3
2

so the corresponding representation is 2-dimensional. The
representation associated with this partition is the standard
representation of S3, denoted π and defined as follows:

π(id) = I2, π(12) =

[
− 1

2

√
3
2√

3
2

1
2

]
, π(23) =

[
1 0
0 −1

]
.

Since π is multiplicative, and {(12), (23)} is a generator for
S3, the above matrices are enough to define π on S3. The
coefficient functions of π are

π1,1 =
[
1, −12 , 1,

−1
2 ,
−1
2 ,
−1
2

]t
,

π2,1 =
[
0,
√
3
2 , 0,

−
√
3

2 , −
√
3

2 ,
√
3
2

]t
,

π1,2 =
[
0,
√
3
2 , 0,

−
√
3

2 ,
√
3
2 ,
−
√
3

2

]t
,

π2,2 =
[
1, 12 ,−1, 12 ,

−1
2 ,
−1
2

]t
.

For the partition (1,1,1), the only standard Young tableau
is the leftmost Young diagram labeled with 1, 2, and 3 from
top to bottom. Then the corresponding representation is 1-
dimensional. The representation associated with this partition
is the alternating representation of S3, denoted by τ , which
maps σ ∈ S3 to the sign of the permutation. The unique coef-
ficient function of τ is given by τ1,1 = [1,−1,−1,−1, 1, 1]t.
Next, we follow Theorem III.6 to obtain all Frobenius–Schur

frames compatible with S. Note that π(S) = π(12) + π(23)
has eigenvalues −1 and 1, and the corresponding eigenvectors
are v1 = [

√
3, 1]t, v−1 = [− 1√

3
, 1]t. Taking i = 1, 2

and λ = 1,−1, we get four Zπ,i,λ spaces as defined in
Theorem III.6,

Zπ,1,1 = C
[√

3, 0,
√

3,−
√

3,−
√

3, 0
]t

Zπ,1,−1 = C
[
−1√
3
, 2√

3
, −1√

3
, −1√

3
, −1√

3
, 2√

3

]t
Zπ,2,1 = C [1, 2,−1,−1, 1,−2]

t

Zπ,2,−1 = C [1, 0,−1, 1,−1, 0]
t
.

For the 1-dimensional representation ι, we have ι(S) =
ι(12) + ι(23) = 2, so λ = 2. Then we get the space

Zι,1,2 = C [1, 1, 1, 1, 1, 1]
t
.

Similarly, we get the space

Zτ,1,−2 = C [1,−1,−1,−1, 1, 1]
t
.

The Frobenius–Schur frames compatible with S are pre-
cisely the union of frames for Zι,1,2, Zτ,1,−2, Zπ,i,±1 (for
i = 1, 2).
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