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Abstract—Entropy metrics are nonlinear measures to quantify
the complexity of time series. Among them, permutation entropy
is a commonly used metric due to its robustness and fast
computation. Multivariate entropy metrics techniques are needed
to analyse data consisting of more than one time series. To this
end, we present a multivariate permutation entropy, MPEG,
using a graph-based approach. Given a multivariate signal, the
algorithm to compute MPEG involves two main steps: 1) we
construct an underlying graph G as the Cartesian product of two
graphs G1 and G2, where G1 preserves temporal information of
each times series and G2 models the relations between different
channels; and 2) we consider the multivariate signal as samples
defined on the regular graph G and apply the recently introduced
permutation entropy for graphs. Our graph-based approach
gives the flexibility to consider diverse types of cross channel
relationships and signals, and it overcomes with the limitations
of current multivariate permutation entropy.

Index Terms—permutation entropy, graph signals, entropy
metrics, complexity, multivariate time series.

I. INTRODUCTION

Entropy measurements are a common tool used in the
analysis of time series to describe the probability distribution
of the states of a system. Based on this concept, the seminal
paper [1] introduced the so-called permutation entropy (PE) as
a measure to quantify complexity in time series, a fundamental
challenge in data analysis. This entropy involves calculating
permutation patterns, i.e., permutations defined by comparing
values of neighbouring samples of the time series. PE has
been applied in a wide range of fields: physical systems [2],
economics [3], and biomedicine [4], [5], among many other
applications.

There have been studies on the properties of permutation
entropy, including extensions to higher regular domains [6]
and irregular domains or graphs [7]. Some modifications of PE
consider nonlinear mappings to deal with the differences be-
tween the amplitude values [8], [9], or weights in permutation
patterns [10]. Previous research also has extended PE to differ-
ent scales [11], [12], and studied its dependencies with respect
to random signals [13] or autoregressive processes [14].

Most physical systems are multivariate. Therefore, univari-
ate entropy metrics have been generalised to a multivariate
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setting, including multivariate sample entropy [15], multivari-
ate dispersion entropy [16], among others. A multivariate
multiscale permutation entropy (MMPE) to analyse physio-
logical signals is proposed in [17]. However, such algorithm
extracts the permutation patterns from each channel separately
regardless of their cross-channel information. MMPE treated
multichannel signals as a unique block and without interac-
tions between the channels. Thus, it works appropriately only
when the components of a multivariate signal are statistically
independent but does not consider the spatial domain of time
series.

Contributions: We introduce a multivariate permutation
entropy based on the Cartesian product of graphs. Such
approach enables us to, first, overcome the limitation of current
multivariate permutation entropy and, second, give flexibility
to consider diverse types of cross channel relationships and
signals.

Structure of the manuscript: The outline of the paper is as
follows. Section II introduces the Cartesian product of graphs
and permutation entropy: univariate, multivariate and for graph
signals. Section III presents the graph associated with a
multivariate signal, and Section IV presents the multivariate
permutation entropy. Section V shows how MPEG applies to
synthetic signals. The conclusions and future lines of research
are presented in Section VI.

II. BACKGROUND: GRAPH AND PERMUTATION ENTROPIES

In this section, we introduce the definition of a graph and
the Cartesian product (Section II-A), the original permutation
entropy (Section II-B) and the recently introduced permutation
entropy for graph signals (Section II-C).

A. Graphs, Cartesian product and graph signal

An undirected graph (or simply graph) G is defined as the
pair G = (V, E) which consists of a finite set of vertices or
nodes V = {1, 2, 3, . . . , n}, an edge set E ⊂ {(i, j) : i, j ∈
V}. The adjacency matrix A is the corresponding N × N
symmetric matrix on edges with entries 1 = Aij = Aji if
(i, j) ∈ E and 0 otherwise. A directed graph or digraph is a
graph where each edge has an orientation or direction.

2081ISBN: 978-1-6654-6798-8 EUSIPCO 2022



The Cartesian product of two graphs G = (V, E) and G′ =
(V ′, E ′), denoted G�G′, is the graph defined by:

1) the vertex set is given by:
V(G�G′) = V × V ′ = { (v, v′) | v ∈ V and v′ ∈ V ′ } ;

2) two vertices (v, v′) and (u, u′) are adjacent in G�G′ if
and only if either
• v = u and v′ is adjacent to u′ in V ′, or
• v′ = u′ and v is adjacent to u in V .

A graph signal is a real function defined on the vertices,
i.e., X : V −→ R. The graph signal X can be represented as
an n-dimensional column vector.

B. Original permutation entropy: univariate and multivariate

Univariate permutation entropy: For a time series X =
{xi}ni=1, the algorithm to compute PE is the following [1]:
1) For 2 ≤ m ∈ N the embedding dimension and L ∈ N

the delay time, the embedding vector xm
i (L) ∈ Rm is given

by xmi (L) = (xi+jL)
m−1
j=0 =

(
xi, xi+L, . . . , xi+(m−1)L

)
for

all 1 ≤ i ≤ n− (m− 1)L.
2) The embedding vector xmi (L) =(
xi, xi+L, . . . , xi+(m−1)L

)
is arranged in the increasing order

vector:
(
xi+(k1−1)L ≤ xi+(k2−1)L ≤ · · · ≤ xi+(km−1)L

)
.

We use the convention in [4] for the case of equal values.
Therefore, any embedding vector xmi (L) is uniquely mapped
onto the vector (k1, k2, . . . , km) ∈ Nm or permutation pattern
πk.

3) The relative frequency for the distinct permuta-
tion π1, π2, . . . , πk, where k = m!, is denoted by
p(π1), p(π2), . . . , p(πk). The permutation entropy PE for the
time series X is computed as the normalised Shannon entropy
for the k distinct permutations as follows

PE = − 1

ln(m!)

m!∑
i=1

p(πi) ln p(πi) .

Multivariate permutation entropy: MMPE is proposed in
[17]. Let U be a multivariate signal, MMPE applies steps 1)
and 2) from the original PE for each channel. The difference
is step 3), where the probability distribution aggregates the
frequency of patterns from all channels in the multivariate sig-
nal, but it does not account for inter-channel relationships. The
relative frequencies are denoted by {πi,j}, then the marginal
relative frequencies describing the distributions of the patterns
is defined by: Pk =

∑p
s=1 πk,s for k = 1, 2, . . . ,m!. The

multivariate MMPE is computed as the normalised Shannon
entropy for the marginal relative frequencies:

MMPE = − 1

ln(m!)

m!∑
k=1

Pk lnPk .

C. Permutation entropy for graph signals

Let G = (V, E) be a graph, A its adjacency matrix and X =
{xi}ni=1 be a signal on the graph. The permutation entropy for
the graph signals PEG is defined in [7] as follows:
1) For 2 ≤ m ∈ N the embedding dimension, L ∈

N the delay time and for all i = 1, 2, . . . , n we define
ykLi = 1

|NkL(i)|
∑

j∈NkL(i) xj = 1
|NkL(i)| (A

kLX)i , where

Nk(i) = { j ∈ V | it exists a walk on k edges joining i and j }.
Hence, we construct the embedding vector ym,L

i ∈ Rm given
by ym,L

i =
(
ykLi
)m−1
k=0

=
(
y0i , y

L
i , . . . y

(m−1)L
i

)
.

2) The vector ym,L
i is arranged in increasing order.

3) The relative frequency for the distinct permuta-
tion π1, π2, . . . , πk, where k = m!, is denoted by
p(π1), p(π2), . . . , p(πk). The permutation entropy PEG for the
graph signal X is computed as the normalised Shannon entropy

PEG = − 1

ln(m!)

m!∑
i=1

p(πi) ln p(πi) .

For time series, PEG reduces to PE. In particular, if X is a
time series and G the directed path on n vertices, then for all
m and L, the equality holds: PE(m,L) = PEG(m,L) (see [7,
Prop. 3]).

III. CONSTRUCTION OF THE GRAPH

In this section, we will associate a graph for each multivari-
ate signal. Let U be a multivariate signal; we will construct a
2D graph (using the Cartesian product). One dimension will
preserve the temporal information, and another will preserve
the cross-channel information.

Dimension 1. Temporal information

We associate the directed path with a time series, where
a vertex represents each sample time. A directed path on n
vertices is a directed graph that joins a sequence of different
vertices with all the edges in the same direction and is denoted
by
−→
Pn, i.e. its vertices are {1, 2, . . . , n} and its arcs (i, i+ 1)

for all 1 ≤ i ≤ k − 1. An example is depicted in Fig. 1(a).

Dimension 2. Relationships between channels

Let U = {Us}s=1,2,...,p be a multivariate signal consisting
on a set of p time series (or channels). Let Ip be the graph
with p vertices representing the interaction between different
channels, i.e. Ui and Uj are adjacent in the graph Ip if and
only if they interact.

If we do not have any a priori information about the inter-
actions between channels, by default, we will consider equal
interactions between all channels. Complete graphs represent
such relations, i.e., we will set Ip = Kp as the complete graph
with p vertices, see an example in Fig. 1(b).

Definition 1. Let U = {ut,s}s=1,2,...,p
t=1,2,...,n be a multivariate time

series with p-channels of length n and with Ip the graph of
interactions between channels. We define GU as the graph
associated with U and given by:

GU :=
−→
Pn�Ip .

We set Ip as the complete graph in case of not having
additional information about the interaction of the channels.

By construction, the vertices in GU and the sample points
in the multivariate signal U are indexed by the same set, i.e.,

V(GU) = V(
−→
Pn�Ip) = V(

−→
Pn)× V(Ip) = Zn × Zp ;

hence, we can consider U as a graph signal defined on the
regular domain GU.
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Fig. 1. (a) Directed path with seven vertices, denoted by
−→
P7. (b) Interactions

between the four channels are encoded with the complete graph on four
vertices, denoted by K4. (c) The Cartesian product

−→
P7�K4.

The constructed GU is a 2D domain, time defines one
dimension, and cross-channel dependencies define another
one. Hence, the graph GU preserve the temporal/dependency
structure of the multivariate signal U. This is not the case for
the currently available implementation of multivariate PE.

Example 1. Consider a multivariate time series with four
channels and seven sample points, i.e., U = {ut,s}s=1,2,3,4

t=1,...,7 ,
and we do not have any additional information between
channels. By default, we will assume all channels interact
with each other. Fig. 1(c) shows the graph GU constructed
in Def. 1.

An example of a multivariate signal where not all channels
interact with each others is shown in Fig. 2(a). The adjacency
matrix associated with the graph GU is shown in Fig. 2(b).
The graph GU constructed according to Def. 1 is depicted in
Fig. 2(c).

Fig. 2. (a) An undirected graph G represents the relationships between
channels. (b) The adjacency matrix corresponding to the graph G. (c) The
Cartesian product

−→
P7�G.

More complex relations between channels: Observe that
the only imposed condition on the graph Ip is the number
of vertices, i.e., Ip has as many vertices as the number of
channels. Non-complete graphs can model other dependencies
between channels.

We will use undirected edges for bidirectional relation-
ships between channels. We also can use directed edges
for unidirectional interaction and include weighted edges for
heterogeneous relations. Hence, in general, Ip would be a
weighted (directed or undirected) graph.

Regular but not periodic structure: Covering graphs or pe-
riodic graphs are used as models of chemical compounds, like
graphene nanoribbons [18]. The graph GU is not a covering
graph, but it can be considered as a geometrical perturbation
(see, e.g., [19]) of a periodic graph. Hence, some properties of
the periodic graphs can be preserved in GU, including spectral
properties [20]. Such properties are important in graph signal
processing [21], [22] and combinatorics [23]. This could be
useful to formulate more general improved multivariate signals
entropies.

IV. MULTIVARIATE PERMUTATION ENTROPY (MPEG)

In this section, we define the multivariate permutation
entropy MPEG. We use the permutation entropy for graph sig-
nals PEG (Section II-C) and the graph construction described
in Def. 1.

Definition 2. Multivariate permutation entropy (MPEG)
Let U = {ut,s}s=1,2,...,p

t=1,2,...,n be a multivariate time series with
interaction graph Ip between channels

1) Graph construction. Construct the graph GU described
in Def. 1, i.e.,

GU :=
−→
Pn�Ip .

2) Graph signal. Consider U as a signal defined on the
graph GU, i.e.,

U : V(GU) −→ R .

3) PE for graph signals. The multivariate permutation
entropy (MPEG) is defined as the permutation entropy
for the graph signal PEG (see Section II-C) for the
signal U and the graph GU, i.e.,

MPEG = PEG(U) .

Proposition 1 proves some important relations between
MPEG and PE metrics presented in the literature (see Table I).

Proposition 1. Let U = {ut,s}s=1,2,...,p
t=1,2,...,n be a multivariate

time series with interaction graph Ip between channels:
1) If p = 1, then MPEG(U) = PE.
2) If s = 1, then MPEG(U) = PEG.
3) If Ip is the graph defined by p isolated vertices, then

MPEG(U) = MMPE .

4) If Ip is a directed path on p vertices, then

MPEG(U) ≈ PE2D .

5) If U = {Ut}s=1,2,...,p
t=1,2,...,n, then MPEG(U) ≈ PE(Ut).

Proof. 1)−3) are easy properties and follow from the entropy
definitions (Table I).
4) If Ip is a directed path on p vertices, then GU is a directed
grid graph with n× p vertices, i.e., GU =

−→
Pn�
−→
Pp. Hence, by

definition of MPEG, the algorithm reduces to apply PEG to
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the signal U defined on the grid GU, and the performance of
PEG and PE2D are similar (see [7, Sec. IV]).
5) We prove the case m = 2 and L = 1; the other cases are
analogous. By definition of PEG, each vertex belongs to the
permutation pattern π1 or π2. For every vertex vi ∈ V(

−→
Pn),

where vi is not the last vertex of the path, it is easy to show
that the set of vertices { (vi, vj) ∈ V(GU) | j = 1, 2, . . . , p }
also belong to π1 (similarly with π2). Hence, the relative
frequencies are preserved in GU and

−→
Pn (except for at most s

vertices corresponding to the last vertex of each path). Then,
for a large n, the values of its corresponding Shannon entropies
are close enough.

Previous proposition allows us to conclude that MPEG is
a general frame where p = 1 is the classical PE, s = 1 is
PEG, Ip without edges is MMPE and GU = 2D is similar to
PE2D.

TABLE I
SUMMARY OF SOME PERMUTATION ENTROPY METRICS.

Entropy metric Properties/Limitations
PE

Permutation Entropy
[1] - [5]

Analyse univariate time series
Simple and computationally fast

Multiscale extension
PE2D: PE for regularly

sampled 2D data
[6]

Analyse bidimensional data
Multiscale extension

Valuable for texture analysis
PEG

PE for Graph Signals
[7]

Analyse graph signals
(including: time series and image)

No multiscale extension yet
MPE

Multivariate Multiscale PE
[17]

Analyse multivariate data but
as a unique block (no interactions)

Multiscale included
MPEG

Multivariate PE,
a graph product approach
Reference: Definition 2

Analyse multivariate data
including cross channel relationships

Use PEG for a graph Cartesian product
No multiscale extension yet

Computational cost: MPEG requires the calculation of
PEG; hence, MPEG is more computationally expensive than
the classical MMPE. If the interaction graph Ip is a cycle,
a path (directed or undirected) or a 2D grid, the number of
edges increases linearly with the number of vertices therefore,
MPEG and PE have computational cost O(N). However, for
Ip the complete graph, the non-zero entries on the adjacency
matrix increase quadratically, leading to a computational cost
of O(N2) [7, Sec. IV.E].

V. EXPERIMENTS

In this section, we apply the algorithm to a set of multivari-
ate synthetic signals used in the study of dynamical systems.

A. The Hénon map

In discrete-time dynamical systems, one of the most studied
is the Hénon map introduced in [24]. Using MPEG we
can detect dynamical changes in the two-dimensional system
defined by the equations:

xn+1 = 1− ax2n + yn and yn+1 = bxn .

The map depends on two parameters: a and b. For the values
a = 1.4 and b = 0.3 indicate the existence of a strange
attractor; hence the map is chaotic. With b = 0.3 and for
other values of the parameter a, Fig. 3 shows that the map
may be periodic, chaotic or intermittent.

Fig. 3. Orbit diagram for the Hénon map with b = 0.3.

We will analyse the parameter a, we consider a ∈ [1, 1.4]
with increments in steps of 0.0001. For each iteration, we
define the multivariate signal U = {xt, yt}t=1,2,...,n. The
initial condition considered are x1 = 0.5, y1 = 0.1 with
n = 100 (similar results are obtained for other values). We
apply MPEG(U) for detecting the dynamic between the two
signals. We also apply PE for each univariate signal and
MMPE to the multivariate signal, results obtained by PE
and MMPE are similar. Fig. 4 shows the entropy values for
MPEG(U) and PE for m = 3 and L = 1.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
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Fig. 4. Entropy values computed for m = 3 and L = 1.

MPEG is able to detect chaotic behaviour and windows
of stability similarly to MMPE (flat region), but the wider
gap between values of MPEG indicates a larger sensitivity.
The time series are periodic during the window of stability
and chaotic outside the window. Both algorithms detect this
fact, but the entropy value is local minimum for MMPE and
local maximum for MPEG. Hence the interpretation of MPEG

is more natural: higher entropy values implies more chaotic
behaviour.

B. Lorenz system
The Lorenz system is an example of a system of ordinary

differential equations. This system has important applications
in mechanics, biology, and circuit theory [25]; and is given by
three simultaneous equations:
x′ = σ(y − x), y′ = x(ρ− z)− y and z′ = xy − βz.
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Lorenz used the values σ = 10 and β = 8/3. It is well-known
that for ρ = 28, the system showed chaotic behaviour. For
ρ < 1, the origin is a global attractor, i.e., all orbits converge
to a unique equilibrium point [25]. MPEG algorithm captures
this fact. Table II shows the entropy values computed MPEG

for L = 1 and m = 3, 4, 5, 6, 7.
TABLE II

ENTROPY VALUES FOR THE LORENZ SYSTEM.

m = 3 m = 4 m = 5 m = 6 m = 7
ρ = 0.8 0.4524 0.2860 0.1981 0.1477 0.1166
ρ = 0.9 0.4538 0.2878 0.1986 0.1489 0.1169
ρ = 1.2 0.7258 0.6673 0.5564 0.4478 0.3787
ρ = 1.3 0.7226 0.6872 0.5905 0.4815 0.4136

Entropy values are larger when ρ > 1, reflecting more com-
plexity, while for ρ < 1, the system tends to the equilibrium;
hence, lower values are obtained. Observe that the gap between
entropy values is preserved for every m value. Gap width
depends on the parameter’s system value ρ and not on the
embedding dimension m chosen for the entropy calculation.
Such fact shows that MPEG is consistent in detecting the
complexity.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a multivariate permutation entropy to quan-
tify the complexity of multivariate time series. The algorithm
proposed use the Cartesian product of graphs and the recently
introduced permutation entropy for graph signals [7]. Our
graph-based approach considers diverse type of cross channel
relationships and overcomes with the limitations of current
multivariate permutation entropy.

Future lines of research-based on the present work are:
1) Multivariate dispersion entropy: Using a similar graph-

technique presented in this paper, some univariate metrics can
be generalised to multivariate metrics, including Dispersion
Entropy.

2) Multiscale permutation entropy for graph signals:
MPEG requires PEG in its computation. Multiscale entropy
for time series involves downsampling or a coarse-graining
process. Such process is unclear for signals defined in graphs;
hence a multiscale PEG is still an open issue.

3) Interaction between channels changing with time: The
graph GU (Def. 1) uses the Cartesian product. Implicitly,
we assumed the relationships between channels are preserved
along time. We will explore constructions involving changes
in the interactions between channels respect to time.

4) Irregular domains and real-world data: The presented
MPEG deals with 2D constructions and synthetic signals. We
will explore similar entropies techniques for irregular domains
and apply to real-world data, including biomedical signals and
phase-flow patterns.
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