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Abstract—Sampling is a fundamental problem in graph signal
processing, which selects a node subset to collect samples, so
that data in remaining nodes can be well recovered. In this
paper, we propose a lightweight sampling algorithm to minimize
MSE approximately for bandlimited graph signals via low-pass
graph filtering dictionary atoms. Specifically, first we derive
a greedy sampling objective without matrix inverse, based on
a proxy of the MMSE criterion. We then define dictionary
atoms of low-pass graph filters to accelerate computation in the
reformulated problem. To further reduce complexity, we reuse
partial results computed in the previous greedy step, so that
candidate solutions can be evaluated via simple vector-vector
multiplications. Extensive experiments show that our proposed
method required the least sampling time compared to other MSE-
based methods and achieved the best MSE performance overall.

Index Terms—Graph sampling, graph signal processing,
greedy approach

I. INTRODUCTION

In the last decade, graph signal processing (GSP) [1]–[3]
becomes a hotspot research field that that studies signals resid-
ing on graphs, such as sensed data in wireless communication
networks [4] and movie ratings on social networks [5]. Signal
samples on connected node pairs of a similarity graph tend to
be alike; this translates to graph signals being (approximately)
bandlimited in the graph Fourier domain. Specifically, the
bandlimited (BL) graph signal has energies only in low graph
frequencies, which are the first few eigenvectors of a variation
operator like graph adjacency matrix, combinatorial Laplacian
matrix, or their variants [2].

When the observation resources are limited, sampling of
an assumed BL graph signal—select a node subset to collect
samples such that the sought BL signal at unsampled nodes
can be well estimated1—is a fundamental problem in GSP
[8]. In the noiseless case, BL graph signals can be recovered
from partial samples without error by the least square (LS)
method, if the corresponding partial eigenvector matrix is
full column rank. Assuming that the signal is corrupted by
additive independent and identically distributed (i.i.d.) noise,
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1Sampling of graph signals can be divided into three categories: aggregation

sampling [6], local measurement [7] and subset sampling [8]. In this paper,
we focus on solving the subset sampling problem.

many graph sampling methods were proposed to minimize the
mean squared error (MMSE) of the LS estimator.

Among MSE-based graph sampling schemes, [9] minimized
the original MSE value directly, which is expensive compu-
tationally due to full eigen-decomposition (ED) and matrix
inverse [10]. [11] leveraged graph spectral proxies (SP) to
choose samples greedily using the first eigenvector2 of a sub-
matrix of a graph Laplacian raised to some power. [12] and
[13] leveraged the Neumann series theorem to minimize a
proxy to the MMSE criterion to mitigate matrix inverse, but
still suffered from high complexity due to multiple matrix-
matrix multiplications. None of the aforementioned graph
sampling schemes are scalable to large graphs due to their
heavy computation costs. Beyond MSE-based methods, there
exist alternative low-complexity graph sampling approaches
[14]–[16], but they tend to have sub-par MSE performance.
Thus, a fast MSE-minimizing graph sampling scheme is still
missing in the literature.

In this paper, we propose a MSE-targeted graph sampling
method with low complexity leveraging low-pass graph filter
dictionary atoms [17]—the ideal low-pass filtered outputs of
impulse signals. Specifically, first, we define an equivalent
sampling objective of a spectrum-shifted MMSE criterion for
a sub-matrix of an ideal low-pass filter operator. Then, we
define dictionary atoms of low-pass graph filters to accelerate
computation of the reformulated problem. To reduce complex-
ity, we reuse partial results computed in the previous greedy
step to evaluate candidate solutions, resulting in simple vector-
vector multiplications. Extensive experiments show that our
proposed method had the least sampling time compared to
existing MSE-based sampling schemes and achieved the best
MSE performance.

II. PRELIMINARIES

A combinatorial graph can be expressed as G = (V, E ,W)
with N nodes in set V = {1, . . . , N}. The connected edge
set is denoted by E , i.e., ∃(i, j) ∈ E iff nodes i and j are
connected. Entry wij > 0 in weight matrix W is the edge
weight of connected node pair (i, j) if (i, j) ∈ E , and wij = 0
otherwise. Given weight matrix W, we define a diagonal
degree matrix D, where dii =

∑
j wij . In this paper, we focus

2We call the eigenvector corresponding to the smallest eigenvalue by first
eigenvector.
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on connected, undirected positive graphs with no self-loops,
and we adopt the symmetric combinatorial graph Laplacian
matrix L = D−W as the variation operator3. Because L is
real, symmetric and positive semi-definite (PSD) for a positive
graph [18], one can write the eigen-decomposition of L as
L = VΣV⊤, where V = [v1, ...,vN ] is an orthonormal
eigenvector matrix, with corresponding non-decreasing eigen-
values 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN along the diagonal
entries of diagonal matrix Σ.

The graph Fourier transform (GFT) [1] of a graph signal
x ∈ RN is defined as its projected vector onto the eigenvector
space of L, i.e., x̃ = V⊤x, and the inverse GFT is x = Vx̃.
A K-BL graph signal x means that its GFT coefficients x̃ are
non-zero only for indices smaller than or equal to K, with
bandwidth λK . A K-BL graph signal can be expressed as
x = VK x̃K , where VK is the first K columns of V, and x̃K

is the first K elements of x̃. To formulate the graph sampling
problem, we first define a sampling operator as follows [11].

Definition 1: To sample M elements from x, where M ≤
N , and produce xS = Cx ∈ RM with a sample set S ⊆ V and
|S| = M , we define a binary sampling matrix C ∈ {0, 1}M×N

as

cij =

{
1, j = S(i);
0, otherwise. (1)

For noiseless BL graph signals, the sampled graph signal is
xS = CVK x̃K . Here, the LS reconstruction can interpolate
original signal without error, assuming that matrix CVK is
full column rank. However, if the sampled signal is corrupted
by additive noise, then different sample sets of the same size
would result in different reconstruction MSE. Thus, we can
minimize the resulting MSE by carefully choosing sampling
matrix C, as done in [12]:

C∗ = argmin
C∈F

Tr
(
[(CVK)

⊤
CVK ]−1

)
, (2)

where F is the set of sampling matrices defined in (1). The
MMSE criterion (2) is also called the A-optimality criterion
[19].

III. LIGHTWEIGHT MSE-BASED GRAPH SAMPLING

A. Shifted MMSE Criterion and Its Equivalence

Evaluating the objective in (2) for a candidate solution C
requires matrix inverse. To reduce the evaluation complexity,
in [13] the authors augmented the MMSE criterion using a
constant spectrum shift:

C∗ = argmin
C∈F

Tr
(
[(CVK)

⊤
CVK + µI]−1

)
, (3)

where µ is a small weight (shift) parameter with 0 < µ < 1.
The authors then proved the following theorem:
Proposition 1: The augmented objective (3) is equivalent to

S∗ = argmin
S:|S|=M

Tr
[
(VKV⊤

K)S + µI
]−1

, (4)

3Some existing methods [12], [14] are designed based on symmetric
normalized graph Laplacian defined by Ln = I − D− 1

2 WD− 1
2 . Our

proposed methods are applicable for different graph variation operators.

if the selected matrix CVK is full column rank.
See [13] for a proof.

Given that the sampling problem is combinatorial in nature,
a greedy approach to optimally choose one sample at a time
was adopted. Specifically, assuming that we have obtained set
St after t iterations, to choose the (t+1)-th sample, we solve
the following local optimization problem:

min
i∈Sc

t

Tr
[
(VKV⊤

K + µI)St∪{i}
]−1︸ ︷︷ ︸

f(St∪{i})

. (5)

Define G ≜ VKV⊤
K +µI for notation simplicity. Equation

(5) needs to compute inverse of GSt∪{i} for every possible
candidate i in set Sct . To reduce the computation cost of matrix
inverse, the authors introduced the next matrix inverse lemma
to compute value G−1

St∪{i} for each i efficiently.
Lemma 1: The inverse of matrix M can be computed using

the inverse of sub-matrix A and the inverse of the Schur
complement H ≜ C−VA−1U of sub-matrix A of matrix
M, i.e., M/A, as

M−1 =

[
A U
V C

]−1

(6)

=

[
A−1 +A−1UH−1VA−1 −A−1UH−1

−H−1VA−1 H−1

]
.

See [20] for a proof.
Note that matrix G is symmetric, and under some permu-

tation, its sub-matrix GSt∪{i} can be expressed as

GSt∪{i} =

[
GSt GSt,{i}
G{i},St

Gii

]
=

[
GSt gt,i

g⊤
t,i Gii

]
, (7)

where gt,i denotes the partial vector of i-th column of G
indexed by St, and Gii is the i-th diagonal entry in G.

From Lemma 1, for t ≥ 1, the inverse of GSt∪{i} is

G−1
St∪{i} =

[
G−1

St
+ h−1

i G−1
St

gt,ig
⊤
t,iG

−1
St

−h−1
i G−1

St
gt,i

−h−1
i g⊤

t,iG
−1
St

h−1
i

]
(8)

where hi = Gii − g⊤
t,iG

−1
St

gt,i is a scalar.
Thus,

f(St ∪ {i}) = Tr
(
G−1

St∪{i}

)
= Tr

(
G−1

St

)
+ h−1

i Tr
(
G−1

St
gt,ig

⊤
t,iG

−1
St

)
+ h−1

i

= f(St) + h−1
i ∥G

−1
St

gt,i∥22 + h−1
i .

(9)

Because f(St) is a constant not affected by the selection of
candidate i, during the (t+ 1)-th greedy step, given input St,
the sampling problem (5) can be simplified to

min
i∈Sc

t

g(i) = h−1
i ∥G

−1
St

gt,i∥22 + h−1
i

s.t. hi = Gii − g⊤
t,iG

−1
St

gt,i; gt,i = GSt,{i}

. (10)

Compared to problem (5), instead of computing matrix
inverse G−1

St∪{i} for each candidate i ∈ Sc, (10) just requires
computing matrix-vector product G−1

St
gt,i using known G−1

St

with complexity O(M2) to evaluate one candidate. In this
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paper, we circumvent the explicit computation of the low-pass
filter matrix G to obtain G−1

St
gt,i, Gii and gt,i using low-pass

graph filtering dictionary atoms.

B. Low-pass Graph Filtering Atoms (LPGFA) and Greedy
Problem Reformulation

Denote by di by

di = VKV⊤
Kδi (11)

where δi is the i-th column of identity matrix I, i.e., the
impulse signal with δi(i) = 1 and δi(j) = 0,∀j ̸= i. The
atoms {di}i∈V are called LPGFA in this paper, which is a
special case of atoms defined in [17]. The local / squared
graph coherence at node i is defined by quantity ∥di∥22 [15],
[21]. Next, we propose a graph sampling algorithm to solve
(10) using di’s.

Given di defined in (11), we compute Gii in (10) as

Gii = δ⊤i VKV⊤
Kδi + µ = di(i) + µ = ∥di∥22 + µ, (12)

where di(i) is the i-th element in vector di. The last
equation holds since ∥di∥22 = (VKV⊤

Kδi)
⊤(VKV⊤

Kδi) =
δ⊤i VKV⊤

Kδi = di(i).
Similarly, gt,i can be computed as

gt,i = GSt,{i} = CSt
(VKV⊤

K + µI)δi

= di(St) + µCSt
δi

(13)

where CSt
is the sampling matrix corresponding to set St,

and di(St) is a sub-vector of di specified by set St.
Given i ∈ Sct , we know that δi(St) = 0. Hence,

µCStδi = 0. (14)

Thus, we can write

gt,i = di(St). (15)

Using (12) to (15), we simplify the greedy optimization
problem (10) to the following

min
i∈Sc

t

h−1
i ∥rt,i∥

2
2 + h−1

i

s.t. hi = ∥di∥22 + µ− r⊤t,idi(St)
rt,i = G−1

St
di(St)

di = VKV⊤
Kδi

(16)

To obtain rt,i, we need to compute matrix-vector multipli-
cation. Next, we seek to obtain rt,i = G−1

St
di(St) via sim-

ple vector-vector multiplications instead, reusing computed
results in last greedy step.

C. Evaluation Complexity Reduction via Solution Reuse

Suppose that the optimal sample in step t is j∗t . Then St =
St−1 ∪{j∗t }. For candidate node in unsampled set i ∈ Sct , we
can write

di(St) =
[
d⊤
i (St−1) di(j

∗
t )

]⊤ ∈ Rt. (17)

Then, for i ∈ Sct ,

rt,i = G−1
St

di(St) = G−1
St−1∪{j∗t }di(St)

=

[
G−1

St−1
+ h−1

j∗t
rt−1,j∗t

r⊤t−1,j∗t
−h−1

j∗t
rt−1,j∗t

−h−1
j∗t

r⊤t−1,j∗t
h−1
j∗t

][
di(St−1)
di(j

∗
t )

]

=

[
rt−1,i + h−1

j∗t
rt−1,j∗t

r⊤t−1,j∗t
di(St−1)− h−1

j∗t
di(j

∗
t )rt−1,j∗t

−h−1
j∗t

r⊤t−1,j∗t
di(St−1) + h−1

j∗t
di(j

∗
t )

]

=

[
rt−1,i + αrt−1,j∗t

− βrt−1,j∗t
−α+ β

]
(18)

where

hj∗t
= Gj∗t ,j

∗
t
− r⊤t−1,j∗t

dj∗t
(St−1) (19)

α = h−1
j∗t

r⊤t−1,j∗t
di(St−1) (20)

β = h−1
j∗t

di(j
∗
t ). (21)

Note that rt−1,i was computed in the last greedy step for
all i ∈ Sct−1. Hence, we can reuse them to obtain value rt,i.
Specifically, given computed rt−1,i and rt−1,j∗t

, we obtain rt,i
by computing vector-vector products r⊤t−1,j∗t

dj∗t
(St−1) and

r⊤t−1,j∗t
di(St−1). The greedy evaluation complexity is thus

reduced from O(M2) to O(M) for each candidate i.
However, to evaluate all candidates in set Sct , we must

compute di’s for all i ∈ V . Next, we leverage a strategy in
[15] to avoid computing all di’s.

It is known that

di(j) = δ⊤j (VKV⊤
Kδi) = δ⊤i (VKV⊤

Kδj) = dj(i). (22)

Thus, to obtain di(St) in equation (16), we compute only

di(St) = [di(St(1)) di(St(2)) · · · di(St(t))]⊤

= [dSt(1)(i) dSt(2)(i) · · · dSt(t)(i)]
⊤

≜ dSt
(i) ∈ Rt

(23)

which consists of the i-th value of vectors dSt(k), k =
1, · · · , t. dSt(k)’s are LPGFAs on nodes in sampled set St.
Thus, we compute at most M LPGFAs rather than N to obtain
di(St), where in practice sample size M ≪ N . At step t+1,
we only need to compute one new LPGFA dj∗ . Combined
results in (18) and (23) with problem (16), we obtain the
optimal greedy solution via five vector-vector multiplications
and at most M LPGFAs.

D. Algorithm and Complexity Analysis

The procedure for problem (10) is illustrated in Algorithm
1, called LPGFA-based graph sampling. The subscript t is
abbreviated for clarity. When S = ∅, to find the first node, we
need to solve the next problem based on (5):

min
i∈V

Tr
[
(VKV⊤

K + µI)ii
]−1

=
1

Gii
(24)

which has the same optimal solution as

max
i∈V

Gii = ∥di∥22 + µ (25)

based on equation (12).
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Algorithm 1 Low-pass graph filtering atoms (LPGFA)-based
sampling of bandlimited graph signals
Input: L, S = ∅ and µ

1: Compute squared graph coherence ∥di∥22, ∀i ∈ V
2: Select the first node by i∗ = argmaxi∈V∥di∥22
3: Update S ← S ∪ {i∗}
4: While |S| < M ▷O(M)
5: Compute one LPGFA di∗

6: ∀i ∈ Sc, compute ▷O(N)
If |S| = 1

ri =
1

∥di∗∥2
2+µ

di∗(i)

else
α = h−1

i∗ r⊤i∗dS\{i∗}(i) ▷O(M)

β = h−1
i∗ di∗(i)

ri =

[
ri + αri∗ − βri∗

−α+ β

]
end If
Compute hi = ∥di∥22 + µ− r⊤i dS(i)

7: Select i∗ = argmin
i∈Sc

h−1
i ∥ri∥22 + h−1

i

Update S ← S ∪ {i∗}
8: end While
9: Return S

TABLE I
IMPACT OF µ ON RECONSTRUCTION MSE OF THE PROPOSED METHOD

µ 0.02 0.06 0.10 0.14 0.18 0.22 0.26
G1 19.1 19.4 19.9 21.4 21.1 22.6 129
G2 20.3 20.7 21.3 21.9 23.0 51.2 1.1e3
G3 22.0 22.1 22.7 23.2 24.1 24.9 57.6

After one node is sampled, i.e., S = {i∗}, there is no
memorized ri for greedy update using (18). Based on equation
(16), for i ∈ Sc,

ri = G−1
i∗i∗di(i

∗) =
di∗(i)

∥di∗∥22 + µ
(26)

which is easy to compute. When the sample size |S| ≥ 2, ri
can be greedily updated using equation (18).

Algorithm 1 has three parts of complexities: (1) squared
graph coherence ∥di∥22 for all nodes i ∈ V; (2) LPGFA
di on sampled nodes i ∈ S , and (3) sample selection. For
sample selection, from Algorithm 1, we evaluate all candidates
in set Sc, whose size is at most N . For each evaluation,
we need to compute vector-vector multiplication r⊤i dS(i)
with complexity O(M). Combined with sample budget M ,
the sample selection complexity is O(NM2). This is lower
than the method proposed in [13], which is O(NM3) during
sampling.

IV. EXPERIMENTAL RESULTS

We evaluate the efficacy of our proposed LPGFA sampling
scheme for BL graph signals via extensive simulations. All
experiments were performed in MATLAB R2019a, running

on a desktop with Intel Core i7-9700K CPU with 3.6 GHz
CPU and 64 GB RAM. First, we generated three graphs using
code in [22], with parameters listed as follows:
G1: community graph with N = 1000 nodes and 10 com-
munities. Edge weights are computed based on generated
coordinates ci with function wij = exp

(
−(ci − cj)

2
)
;

G2: random sensor graph with 1000 nodes;
G3: hyper-cube graph with 1002 nodes in three dimensions.

The graph signals were assumed to be BL with bandwidth
K = 50 on the eigen-space of those graphs. Their first K
GFT coefficients were generated randomly using distribution
N (1, 0.52), and the remaining GFT coefficients were set to be
zeros. Graph signals were then computed via inverse GFT of
the generated spectral coefficients. Gaussian noise was added
into graph signals in the vertex domain based on different
signal to noise ratios (SNRs).

First, we compared our proposed methods with five other
deterministic MSE-targeted graph sampling algorithms on G1,
G2 and G3: A-optimal [9], E-optimal [23], spectral proxies
[11], GFS [13] and MIA [12]. We did not simulate other low-
complexity methods since their goal is not targeting on MSE
performance. We used combinatorial graph Laplacian matrix
(L = D −W) as the variation operator for all simulated
methods. The parameters of those approaches were the same
as that used in [13]. The shift parameter µ was set to 0.01
for the proposed LPGFA sampling. In this paper, we choose
explicit ED to obtain the exact di’s.

Average reconstruction MSE and execution time as func-
tions of sample size are shown in Fig. 1, where SNR is 0dB.
In this figure, the proposed LPGFA had almost the same
performance as the A-optimal sampling, which optimized the
original A-optimality problem using greedy approach directly,
considered as the performance benchmark. Further, compared
with all simulated MSE-targeted methods, our method LPGFA
had the least sampling time. Based on the above analysis,
we conclude that among MSE-based methods, the speed
superiority of our proposed method was significant, and it also
achieves the best performance. We conducted experiments on
G1, G2 and G3 with different µ to investigate its impact on
the MSE value of LPGFA method, where the sample size is
100 and SNR is 0dB. The simulation results are shown in
Table. I, which indicates that the proposed LPGFA has the
best performance when µ is small.

V. CONCLUSION

In this paper, we proposed a low-pass graph filtering atoms
(LPGFA)-based sampling method for bandlimited graph sig-
nals targeting the MMSE criterion. We first introduced a
spectrum shifted MMSE criterion and its equivalent version,
which is a function of a submatrix of an ideal low-pass
filter. Then, we avoided inverse computation of a greedily
enlarged submatrix by using a matrix inverse lemma. We
defined graph filtering atoms—the low-pass filtered impulse
signal—to reformulate the problem for acceleration. For fast
sampling, we reused results from the previous greedy step to
speed up computation of candidates’ scores. Experiments had
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Fig. 1. Experimental results of different MMSE-based graph sampling algorithms in terms of sample size. From left to right: G1, G2 and G3.

validated the efficiency of our proposed method in both speed
and MSE performance.
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