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Abstract—Performances of the Multivariate Kurtosis are in-
vestigated when applied to colored data, with or without Auto-
Regressive prewhitening, and with or without projection onto
a lower-dimensional random subspace. Computer experiments
demonstrate the importance of taking into account the possible
color of the process in calculating the power of the normality
test, in all the scenarios.

Index Terms—high-order statistics, multivariate kurtosis, de-
tection of changes, dependence, Gaussianity

I. INTRODUCTION

Detecting changes in the distribution of a stochastic process
is a longstanding problem and a myriad of methods has been
proposed; see e.g [1]. Our concern is the detection of non-
Gaussian signals in a Gaussian background, i.e. Normality
tests. The framework considered here is one in which time-
series are recorded on d sensors (typically d = 2 or 3 in
many applications). Moreover, we are interested in the online
problem of reacting to a change as quickly as possible after it
occurs, also known as sequential detection problem [2], [3].

Normality tests belong to the the class of tests without
alternative, unlike other approaches based on the Likelihood
Ratio such as the CUSUM test [4], [5]. The case of i.i.d (scalar
or d-variate) processes has received significant attention, see
[6], [7] for a detailed survey. On the other hand, few tests
concern the case of dealing with time-series from multiple
sensors that in practical applications cannot be considered to
be i.i.d, a case we will refer to as n.i.d or colored. Moreover,
the proposed approaches for dealing with multivariate colored
processes, such as [8] [9], can hardly be used in real-time
applications. For this reason, we have derived a joint normality
test for multivariate colored data [10] that is implemented with
low computational burden.

There has also been interest in testing the normality of
unobserved regression residuals [11], also referred to as the
process of innovations. More precisely, define the Multi-
dimensional Auto-Regressive [12] (or Vector AR of order p
denoted VAR(p)) model to describe the statistical behavior of
the d× 1 vector of observation x(i) for i = 1, . . . , N :

x(i) =

p∑
k=1

Akx(i− k) + ϵ(i) (1)

where Ak is a d × d matrix of unknown parameters and
ϵ(i) is the ith unobservable residual assumed zero-mean and
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i.i.d. An additional assumption is that residuals are drawn
from a normal distribution. The drawbacks of violating the
latter assumption has been studied, for instance [13] showed
that the ordinary least squares method, which is usually
used to estimate {Ak}1≤k≤p, is sub-optimal for heavy-tailed
distributions. Thus, it is important to validate this assumption
of normality in this linear model.

Moreover, since the residuals are estimated in practice, we
expect that errors in the model specification and estimation
will impact the whitening performance of the filter and the
estimated innovation process ϵ̂ could no longer be consid-
ered i.i.d. In this case, the normality tests designed for i.i.d
processes become biased as shown in [7], highlighting the
importance of deriving our joint normality test for variables
that are not statistically independent.

Within this framework, we concentrate on the Multivariate
Kurtosis (MK) defined in (3). In [10], we calculated the
power of this test variable in the colored case, and in [14]
we studied its performances when the observed multivariate
process was projected onto an arbitrary subspace of low
dimension (typically 1-D or 2-D), in particular for time series
generated by colored copulas. The main contributions of the
present paper are now the following:

• We compare the performances of the MK test with and
without linear prewhitening, i.e. using x(n) or ϵ(n).

• We observe the impact of projecting 3-D observations
and their regression residuals onto an arbitrary plane (2-
D projection) or direction (1-D projection).

• For sake of time and memory effectiveness, the test statis-
tics and the regression function are estimated recursively,
by using both exponential averaging and the Recursive
Least Squares (RLS) algorithm.

The paper is organized as follows: our recent results [10]
are summarized in Section II. The recursive implementation is
described in Section III, and the complete algorithm in Section
IV. Computer results are eventually reported in Section V.

II. ASYMPTOTIC STATISTICS OF THE KURTOSIS

Let x(n) = [x1(n), x2(n), . . . , xd(n)]
T ∈ Rd be a real-

valued d-variate random variable. Let S(τ) = E{x(n)x(n −
τ)T } be the covariance function whose entries are Sab(τ).
Also denote S(0) = S.
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Let X
def
= {x(1), . . . ,x(N)} be a stochastic stationary

process of N random variables x(n). Our aim is to test:

H0 : X ∼
n.i.d
N (0,S) versus H̄0 (2)

Where x(n) are identically but not independently distributed
(n.i.d). Following Mardia’s definition of the Multivariate Kur-
tosis (MK) [15], our test statistic reads:

B̂d(N) =
1

N

N∑
n=1

(
x(n)T Ŝ

−1
x(n)

)2
(3)

with
Ŝ =

1

N

N∑
k=1

x(k)x(k)T (4)

A. Known results: Mardia’s MK test for a i.i.d. process

The following results make use of Landau’s notations o( 1
N )

and O( 1
N ), to precise that the absolute approximation error is

dominated by 1
N or is of the order of 1

N , respectively.
Theorem 2.1: [15] Let X be an i.i.d. process of dimension

d. If X ∼
i.i.d
N (0,S) then B̂d(N) −−−−→

N→∞
N (µ, σ2), with:

µ = d(d+ 2) + o(
1

N
) (5)

σ2 =
8d(d+ 2)

N
+ o(

1

N
) (6)

In [10] we devised a similar theorem for multivariate data
that are no longer considered i.i.d. In the following, we sketch
the main assumptions to identify the statistics of Mardia’s MK
test in the multivariate n.i.d. case.

B. Joint normality test for a colored process

Proofs of the results presented in this subsection can be
found in [10], as well as theoretical details.

1) Mathematical Preliminaries: In order to guarantee con-
vergence while relaxing the i.i.d assumption, we make the
mixing assumption:

∑∞
τ=0 |Sab(τ)|2 converges to a finite limit

∀(a, b) ∈ {1, . . . , d}2.
Let Ŝ = S + ∆, where ∆ is small compared to S, then

we have the following lemma:
Lemma 2.1: The entries of matrix ∆ are of order O(1/

√
N).

Let G = S−1. This lemma allows the following expansion of
the precision matrix Ĝ

def
= Ŝ

−1
up to second order in ∆:

Ĝ = G−G∆G+G∆G∆G+ o(1/N). (7)

Finally, by injecting (7) in B̂d(N) defined in (3), an approxi-
mation of the test statistic in o(N−1) may be obtained, as B̂d

can be shown to converge to a normal variable. Thus we only
need to calculate its mean and variance, whose expressions
are given below.

2) Statistics for a colored scalar process:

E{B̂1} = 3− 6

N
− 12

N2

N−1∑
τ=1

(N − τ)
S(τ)2

S2
+ o(

1

N
) (8)

Var{B̂1} =
24

N

[
1 +

2

N

N−1∑
τ=1

(N − τ)
S(τ)4

S4

]
+ o(

1

N
) (9)

The dependence between time samples is taken into account
in the covariance function terms S(τ). In the case of i.i.d
samples, we recover the expressions given in Theorem 2.1
above, for d = 1.

3) Statistics for a bivariate colored process:

E{B̂2} = 8− 16

N
− 4

N2

N−1∑
τ=1

(N − τ)Q1(τ)

(S11S22 − S2
12)

2
+ o(

1

N
) (10)

Var{B̂2} =
64

N
+

16

N2

N−1∑
τ=1

(N − τ)Q2(τ)

(S11S22 − S2
12)

4
+ o(

1

N
) (11)

where Qi(τ) are linear combinations of Sab(τ) thus contain-
ing information about the time-dependence between samples.
Despite the difficulty to derive such expressions, the compu-
tational burden involved by their implementation is low.

III. TIMES SERIES MODEL: MULTIDIMENSIONAL
AUTO-REGRESSIVE MODEL

A. Definition

The VAR(p) model defined in (1) can be written in matrix
format as:

Y = Zw + ϵ, (12)

where, ∀i ∈ {p, . . . , N − 1}:

w =
[
A1,A2, . . . ,Ap

]T ∈ Rdp×d

Y =
[
x(p+ 1), . . . ,x(N)

]T ∈ R(N−p)×d

Z =
[
z(p), z(p+ 1), . . . ,z(N − 1)

]T ∈ R(N−p)×dp

z(i) =
[
x(i);x(i− 1); . . . ;x(i− p+ 1)

]
∈ Rdp×1

ϵ =
[
ϵ(p+ 1), ϵ(p+ 2), . . . , ϵ(N)

]T ∈ R(N−p)×d

A Least Squares estimation can be performed to find ŵ that
minimizes ∥Zw − Y ∥2 assuming that Γ = ZTZ is non-
singular:

ŵ = Γ−1ZTY (13)

B. Recursive Estimation of VAR(p) parameters

To estimate the regression parameters, a classical Recursive
Least Squares methods (RLS) is proposed. This adaptive
strategy is well known to be suitable for data showing some
sort of non-stationarity, and has been widely used (see e.g.
[16] [17], [18] and [19] to only cite few).

Below, the main RLS equations are given for the present
problem. Let λ1 be the decay factor weighting the observa-
tions, and ŵk be the kth column of ŵ defined in (13), and
yk(t− 1) =

(
xk(1), xk(2), . . . , xk(t− 1)

)T
.

yk(t− 1) = Zŵk(t− 1) + ϵk(t− 1) (14)
ŵk(t− 1) = Γ−1(t− 1)ZTyk(t− 1) (15)

Suppose we want to update the model with new observations
x(t); a new row z(t)T is appended to Z in (13), and a new
observation xk(t) is appended to yk. In the RLS algorithm,
Γ−1(t) and ŵk(t) are recursively expressed for t > N as
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Γ−1(t) =
(
λ1Γ(t− 1) + z(t)z(t)T

)−1

(16)

= λ−1
1 Γ−1(t− 1)− buuT (17)

ŵk(t) = Γ−1(t)Z̃
T
ỹk (18)

= ŵk(t− 1)− b(zT (ŵk(t− 1) + xk(t)u))u+ xk(t)u,

u = λ−1
1 Γ−1(t − 1)z(t) and b = (1 + z(t)Tu)−1. Note that

Z̃ is Z in (13) augmented with the row z(t)T , and ỹk =[
yk(t − 1);xk(t)

]
. Note that we can also vary λ1 and the

order p of the model to allow for more flexibility and adapt
to local non-stationarities of the data, see e.g [20], [21]. This
is not detailed in this communication.

IV. CHANGE DETECTION ALGORITHM

A. The test in practice

First we choose the nominal level of the test:

α = P(choose H̄0|H0 is true).

• It has been shown in previous sections that z = (B̂d −
E{B̂d})/

√
Var{B̂d} is asymptotically normal.

• We reject the null hypothesis H0 at a significance level
α if:

2(1− Φ(z)) < α

where Φ denotes the cumulative distribution function
(cdf) of N (0, 1).

• In practice, the time-structure is unknown and the co-
variance (matrix) function entries Sab(τ) are replaced by
their sample counterparts at time t.

B. Recursive normality test on regression residuals

The proposed test statistic is computationally efficient i.e it
can be easily computed over a sliding window or by using the
exponential weighting technique to test the normality of the
estimated regression residuals available at time t assumed to
follow a Gaussian distribution N (0,V (t)). Let 0 < λ2 < 1:

V (t) = λ1V (t− 1) + (1− λ1)ϵ̂(t)ϵ̂(t)
T (19)

B̂d(t) = λ2B̂d(t− 1) + (1− λ2)(ϵ̂(t)
T V̂

−1
(t)ϵ̂(t))2. (20)

The algorithm for sequentially detecting changes reads:
Require: p ≥ 1, 0 < λ1, λ2 < 1, α, δ

Initialization: Γ(p)← δIdp, B̂d(p)← 0, V (p)← Id

for p+ 1 ≤ t ≤ N do
Update Γ−1(t) ▷ using (16)
Update {Âk(t)}1≤k≤p ▷ using (18)

Compute ϵ̂(t) = x(t)−
p∑

k=1

Âkx(t− k)

Compute z = (B̂d(t)− E{B̂d(t)})/
√
Var(B̂d(t))

if 2(1− Φ(z)) < α then
Change is detected

else
No change

end if
end for

Forgetting factors λ1 and λ2 (for 2nd and 4th order statistics
respectively) are usually chosen by a rule of thumb, depending
on the time-scale of the change. To give a better intuition
of this factor, one can calculate the length Neff of a uniform
sliding window that would yield the same estimator variance,
when data are i.i.d. normal. This leads to λ ∝ 1/Neff. More
details will be provided in a subsequent paper.

For the RLS algorithm, a common choice is λ1 = 0.99
which corresponds to using a virtual window’s size Neff =

2
1−λ1

. As for the recursive estimation of the Kurtosis, to pre-
vent the problem of slow convergence, we choose Neff = 1000.

V. COMPUTER RESULTS

A set of of Monte Carlo simulations is presented to com-
pare the power of the proposed normality test when applied
directly on data or on regression residuals. Then, we study
the performance of the test statistic on a low-dimensional (2-
D or 1-D) projection of the initial multivariate data. As a
final illustration of the effectiveness of our method, we apply
the change detection Algorithm presented in subsection IV-B
on synthetic colored data undergoing an abrupt change in its
distribution.

A. Applying the test on colored data

1) Directly on data: M = 2000 simulations are considered,
each being based on a sequence of N = 1000 samples. First,
we simulate 1-D AR(p) processes (for p ∈ {4, 14, 20}). The
AR coefficients are computed such that the equivalent filter is
low-pass, with band pass equal to .25 (normalized freq).

For each simulation a 2-D Gaussian (or Uniform) AR(p)
process is constructed by time embedding : x(t) =
{x(2t), x(2t+ 1)}. Then, both Mardia’s test derived for i.i.d.
samples (denoted B̂1,i.i.d) and the test for colored samples,
whose statistics are defined by equations (8, 9) for colored
samples (denoted B̂1) are applied on the marginals of the 2-
D process, and compared. Finally, the statistics derived for
n.i.d. bi-variate data B̂2, described by equations (10, 11) is
also applied to the 2-D process.

The obtained empirical rejection rates of hypothesis H0 are
computed as #Rejections

M , for a test level α = 5%. The results
are summarized in Tables I and II.

TABLE I
EMPIRICAL REJECTION RATES FOR 2000 SIMULATIONS FOR α = 5%

SIGNIFICANCE LEVEL WITH THE B̂1,i.i.d, B̂1, B̂2 TEST APPLIED DIRECTLY
ON AR(p) DATA WITH p = 4, 14

AR(4) AR(14)

Test Statistic Gaussian Uniform Gaussian Uniform

B̂1,iid 0.067 1. 0.123 0.512

B̂1 0.052 0.99 0.045 0.456

B̂2 0.06 1. 0.065 0.88

• It seems that B̂1,i.i.d has a better detection power than
B̂1. As a matter of fact, by comparing the formulas
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TABLE II
EMPIRICAL REJECTION RATES FOR 2000 SIMULATIONS FOR α = 5%

SIGNIFICANCE LEVEL WITH THE B̂1,i.i.d, B̂1, B̂2 TEST APPLIED DIRECTLY
ON AR(20) PROCESS

AR(20)
Test Statistic Gaussian Uniform
B̂1,iid 0.228 0.430

B̂1 0.047 0.399

B̂2 0.06 0.688

of their variance in (5, 9), we can see that that the
variance of B̂1,i.i.d is underestimated, consequently, the
latter over-rejects the hypothesis of Gaussianity. This is
noticeable even for Gaussian AR(p) process (Under H0),
with rejection rates that surpass the nominal level 5%.

• Both scalar tests B̂1,i.i.d and B̂1 perform poorly com-
pared to the joint normality test statistic B̂2.

• When the correlation tails last longer (Table II), the
overall performance of the test statistics tends to decrease.

2) On Regression residuals: We now study the power of
the normality tests on estimated regression residuals. We
utilize the Least Squares method to obtain ϵ̂. The simulation
procedure and the tests are the same as those described in the
previous paragraph V-A1. We study the case where the order p
of the generated AR(p) process is known (we choose p = 20),
and the case where the order is misspecified (p̂ = 9). The
empirical rejection rates are summarized in Table III.

TABLE III
EMPIRICAL REJECTION RATES FOR 2000 SIMULATIONS FOR α = 5%

SIGNIFICANCE LEVEL WITH THE TEST STATISTICS B̂1,i.i.d, B̂1, B̂2

APPLIED ON ESTIMATED REGRESSION RESIDUALS USING OLS METHOD,
WITH KNOWN AND MISSPECIFIED ORDER

On Residuals of AR(20) On Residuals of AR(20)
p = 20 p̂ = 9

Test Statistic Gaussian Uniform Gaussian Uniform

B̂1,iid 0.06 1. 0.064 0.582

B̂1 0.05 1. 0.051 0.429

B̂2 0.055 1. 0.06 0.850

• If the model is perfectly known, then all test statistics
perform well on the well estimated regression residuals.
However, if the model order is under estimated, some im-
portant time correlation remain, and scalar tests perform
poorly compared to the joint normality test, as expected.

B. Random Projections

We simulate a 3-D process VAR(p), p ∈ {5, 20}, of length
N = 1000 following equation (1), where the inputs ϵ(t)
are i.i.d with distributions either multivariate standard normal
N (0, 1) or multivariate U(−2, 2).

Then M = 2000 different projections on an arbitrary plane
(2-D projection) going through the origin of the 3-D space
are computed, corresponding to as many 2-D time series. For
comparison, the same set of observations is also projected M
times on an arbitrary direction (1-D projection). Eventually,

we run the same set of experiments on estimated regression
residuals estimated by ordinary least squares method (OLS).
The results are reported below.

TABLE IV
EMPIRICAL REJECTION RATES OF THE TEST STATISTICS APPLIED TO A

LOW REPRESENTATION OF 3-D VAR(p) PROCESS

3-D
VAR(5)

2-D
projection

Gaussian Uniform

B̂2 0.051 0.986

3-D
VAR(5)

1-D
projection

Gaussian Uniform

B̂1 0.056 0.529

TABLE V
EMPIRICAL REJECTION RATES OF THE TEST STATISTICS APPLIED TO A

LOW REPRESENTATION OF 3-D VAR(20) PROCESS WITH UNIFORM INPUTS
AND ITS ESTIMATED REGRESSION RESIDUALS WITH A VAR(10) MODEL

3-D On residuals
VAR(20) p̂ = 10

1-D proj., B̂1 0.250 0.41

2-D proj., B̂2 0.580 0.9

• The test B̂1 applied directly on 1-D projections of either
the observations or its residuals computed by OLS, per-
forms poorly. This is in accordance with our observations
from the preceding experiments.

• Even with a misspecified order, the joint test statistic
performs best (empirical power of 90%) on the 2-D low
representation of regression residuals, as it is able to ac-
count for both temporal and spatial (between coordinates)
dependences.

C. Change detection on synthetic data

Consider the case where a process ϵ is constituted of i.i.d
samples following a standard normal distribution. The process
undergoes a change at nc = 5000 in its distribution: samples
in the interval [5000, 10000] are now following a uniform
distribution U(−

√
3,
√
3). The change ends at n = 10000 and

the samples are again normally distributed. The process ϵ is
then (low pass) filtered using an AR(5) model and is now
denoted x.

One realization of this process is given in Fig. 1. It is
clear from this figure that the change in the distribution is
unbeknownst to the human eye.

The change detection algorithm presented in subsection
IV-B is applied to this realization by setting p = 5, λ1 =
0.99, λ2 = 0.998, α = 5% and δ = 1. A 2-D process is
obtained by taking x(t) = {x(2t), x(2t+ 1)}.

For comparison, the CUSUM algorithm [2] is applied on
the regression residuals by using its recursive form. The
instantaneous log-likelihood ratio is computed as:

L(t) = − ln(2
√
3) +

1

2
ln(2π) +

1

2
ϵ̂2(t) (21)
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Fig. 1. One realization of a Gaussian AR(5) process that undergoes an abrupt
change in the distribution of its excitation ϵ (from N (0, 1) to U(−

√
3,

√
3)).

Affected samples are between red dashed lines.

Fig. 2. Evolution of the normalized test statistics B̂1 (in blue) and B̂2 (in
orange). In red, the evolution of the cumulative sum s(n) =

∑n
t=1 L(t).

Black horizontal dashed lines are the critical values ±1.96 corresponding to
a test power of 95%. Red vertical dashed lines are the beginning and end of
an abrupt change in the excitation statistics of an AR(5) process.

• Our proposed test statistics B̂1,2 stay in between ±1.96;
in other words they do not reject the null hypothesis of
Gaussianity with a false alarm rate of 5%. They grow
continuously in absolute value after the change time nc =
5000 and keep rejecting H0 until the end of the change
at n = 10000.

• There is no clear-cut in the cumulative sum algorithm
that indicates a change in the distribution of the residuals.
In fact, the likelihood ratio in (21) is derived under the
hypothesis that the process ϵ is i.i.d. As the latter’s values
are estimated recursively, they are more likely to have
residual correlations between them and the hypothesis
of independence no longer holds, explaining why the
cumulative sum of L(t) keeps increasing.

VI. CONCLUDING REMARKS

A novel approach to testing the Gaussianity of colored data
is proposed. In a first stage, data are whitened recursively.

Then the MK test is applied in a second stage on available re-
gression residuals in an online manner. Computer experiments
have been performed to assess the impact of the preprocessing
stage on the power of the test. They have evidenced the fact
that the bivariate MK statistics we recently obtained (assuming
both spatial and temporal dependence) perform always better
than their scalar counterparts. The latter are indeed severely
affected by serial correlation in residuals due to imperfect
whitening in the first stage. The same conclusions can be
drawn if data are randomly projected onto a low-dimensional
subspace.

Future work will concern the validation of the change
detection algorithm on real-world phenomena recorded by
a network of d-variate sensors within a multiple hypothesis
testing framework.
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