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Abstract—Fisher information is a fundamental quantity in
information theory and signal processing. A direct analytical
computation of the Fisher information is often infeasible or
intractable due to the lack or sophistication of statistical models.
In this paper, we propose a Fisher Information Neural Estimator
(FINE) which is computationally efficient, highly accurate, and
applicable for both cases of deterministic and random parame-
ters. The proposed method solely depends on measured data and
does not require knowledge or an estimate of the probability
density function and is therefore universally applicable. We
validate our approach using some experiments and compare with
existing works. Numerical results show the high efficacy and low-
computational complexity of the proposed estimation approach.

I. INTRODUCTION

Fisher information is a well-known and well-defined con-
cept in mathematical statistics, which is defined as a measure
of the amount of information that a random variable carries
about some unknown parameters. In estimation theory, the
inverse of the Fisher information directly gives a well-known
lower bound called Cramér-Rao bound (CRB) on the variance
of any unbiased estimator of the unknown parameters. There
are many other areas in which the Fisher information is applied
to, e.g., Bayesian statistics, frequentist statistics, optimal ex-
perimental design, computational neuroscience, physical laws,
biology, and machine learning [1]-[3].

Analytically, a closed-form expression of the Fisher infor-
mation matrix (FIM) might be obtained by taking the expec-
tation of the Hessian matrix of the log likelihood function
(the score function). Unfortunately, such a straightforward
computation is often impossible due to unknown statistical
models. Even in circumstances where the statistical model is
available, a closed-form expression of the FIM can still be
intractable due to model sophistication. This difficulty raises
the significance of developing FIM estimation methods.

The estimation of the FIM can be divided into two cat-
egories: plug-in and non-plug-in. In the plug-in category,
the strategy is to first estimate the probability density func-
tion (pdf) based on the observed data and then use the
pdf estimate for a numerical computation of the FIM. For
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example, in [4], Spall proposed a Monte Carlo resampling-
based (MCR) method for FIM estimation. The MCR method
first performs the pdf estimation for each of the perturbed
experiments and then numerically computes the gradient of
the log density function before sample averaging. Another
existing plug-in method for FIM estimation was introduced
in [5], which also estimates the pdf using the observed data
and then obtains the derivatives of the pdf based on finite-
difference approximation. Unlike the plug-in methods, the
strategy of non-plug-in methods is to directly estimate the
FIM based on the observed data. This non-plug-in strategy
is particularly suitable for circumstances where the system
is a black box whose operating parameters are tunable, e.g.
controlled experiments [6]-[8]. One can observe data from the
system for various settings of the parameters. An example of
non-plug-in FIM estimation methods is in [9], which is based
on a relation between the f-divergence and the FIM.

The strategy of plug-in methods is straightforward, but an
accurate estimate of the pdf may not always be possible or
is very difficult to obtain in scenarios where the underlying
pdf is sophisticated. Non-plug-in methods do not rely on
pdf estimation since the FIM is directly estimated from the
observed data, and thus they are relieved of the difficulties
in pdf estimation. However, existing non-plug-in methods
like the one in [9] often suffer from problems of having a
high computational complexity, requiring very large data sets
for accurate estimation, or being specifically developed for
systems where the operating parameters are deterministic.

Motivated by the above discussion and a recently developed
mutual information estimation method in [10], we propose a
non-plug-in FIM estimator, referred to as Fisher Information
Neural Estimator (FINE), which has several advantages such
as having a low computational complexity, high estimation
accuracy, and applicable for both cases of deterministic and
random parameters. It should also be noted that FINE em-
ploys neural networks and thus takes advantages of their nice
properties such as the ability to learn non-linear and complex
relationships and having low computational complexities.

The contributions of this paper are summarized as follows.
First, we propose FINE — a Fisher information estimator based
on neural networks for the case of deterministic parameters.
The proposed FINE is based on a relation between the Fisher
information and the f-divergence, which was exploited in
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a previous work [9]. However, unlike [9] which computed
the f-divergence by using the minimal spanning tree (MST)
and the Friedman-Rafsky (FR) statistic, FINE computes the
f-divergence by neural networks. Compared to [9], FINE
has not only higher estimation accuracy but also a lower
computational complexity. Second, we show that the pro-
posed FINE framework can be used for the case of random
parameters, i.e., FINE is applicable for the Bayesian Fisher
information estimation problem. We prove that the relation
between the Bayesian Fisher information matrix (B-FIM) and
the f-divergence follows an expression that is similar to the
case of deterministic parameters. To validate the efficacy of
the proposed FINE in the Bayesian framework, we carry out
some simulations about dynamical phase offset estimation in
a communication system. Numerical results show that the
proposed FINE gives a better estimation accuracy compared
to an existing asymptotic bound.

II. BACKGROUND, PROBLEM STATEMENT,
AND RELATED WORK

A. Fisher Information and f-divergence

1) Fisher Information: Consider a random variable X
whose pdf p(x|@) is parameterized by 8 € R?, a vector of d
unknown parameters. When 6 is deterministic, the FIM F(8)
is defined as follows [11]:

Exjo | (Vologp(2/0)) (Vo logp(al6)) ]
= —Ex|o [Ho(logp(z|0))], (D

where Vg log p(z]0) and Hg (log p(z|0)) respectively denote
the gradient and the Hessian matrix of the score function
log p(x|@) with respect to 6. In case the parameter vector 0
is random, the B-FIM B is used instead [12], [13]

B=Exy {(Vg log p(z, 0)) (Vg log p(z, 0))1
= —Ex, [Ho(logp(z,0))], 2

where p(z, 0) is the joint pdf of X and 6.

2) f-divergence: For any convex function f such that
f(1) = 0, the f-divergence between two probability distri-
butions p(x) and ¢(z) is defined as a function Dy(p||q) that
measures the difference between p(z) and g(x) [14]:

Dy(pllg) = E, {f <§Eg)] = /Q(x)f <28> dr. (3)

The Kullback-Leibler (KL) divergence is a special case of the
f-divergence where f(t) = tlog(t) and is given as

prato) = [os (5 )| = [ e (G5 ) .

3) Relation Between Fisher Information and f-divergence:
For notational simplicity, let pg and p,, denote the probability
distribution of a random variable X parameterized by 6 and
1 = 049, respectively. Here, 9 is a small perturbation around
0. This means pg = p(x|0) and p,, = p(x|0@+9). The relation

F(0)

between the Fisher information F(6) and the f-divergence
between pg and pg.s is given in a quadratic form as [9], [15]

1
Dy(pellpn) = 567 F(6)9. 5)

The above relation can be obtained by applying the Taylor
expansion to the f-divergence. This relation indicates that
if Dy (pollpy) can be computed for at least d(d + 1)/2
different perturbations 4, then the FIM F(0) can be obtained
by solving (5). This is due to the fact that F(8) € R¥*? is a
symmetric matrix and thus contains d(d + 1)/2 different ele-
ments. It should be noted that the relation in (5) is for the FIM.
One of our contributions is to prove that the relation between
the B-FIM and the f-divergence follows an expression that is
similar to (5).

B. Problem Statement and Related Work

1) Problem Statement: Consider a random variable X
whose pdf p(z|@) is unknown. The parameters € can be
either deterministic or random. We assume the parameters are
tunable in the sense that they can be perturbed by a small
deviation 8. The problem is to estimate the FIM F(6) when
0 is deterministic or the B-FIM B when 6 is random using
the data samples of X.

2) Related Work: In [9], Berisha and Hero exploited the
relation in (5) to propose a non-plug-in Fisher information
estimator based on the FR statistic [16]. Specifically, the
method in [9] computes Dy (pg||py) using the MST for M
different perturbations of § where M > d(d + 1)/2. Then,
the FIM F(0) is obtained by solving (5) based on the M
computed divergence values.

III. PROPOSED FINE

A. Deterministic Parameters

Here, we consider deterministic parameters € and we want
to estimate the FIM F(0). TFINE also exploits the relation
between the Fisher information and the f-divergence in (5)
but unlike the method in [9] which computes the f-divergence
by using the FR statistic and the MST, the proposed FINE
employs neural networks to compute the f-divergence. As will
be shown later, the use of neural networks not only helps
improve the estimation accuracy but also significantly reduces
the computational complexity.

Our motivation for computing the f-divergence by neural
networks comes from a recently developed mutual informa-
tion neural estimation method in [10], which is referred to
as MINE. Specifically, the mutual information between two
random variables Y and Z is given as

10, 2) = H(Y) ~ H(Y | 2) ©
= Dx1L(Pyz| Py Pz) (7N
= Sup ]EPYZ [T] — log (EPYPZ [eT]) ®)

T:Q—R
> sup IEPYZ [T] - IOg (]EPYPZ [eT]) )
TeF
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Proposed FINE

E P ——X neural network d((s )\
| Py ———X, T '

i Pe —X neural network d(52)
P X, P

pe —X neural network d 6
= (dnm) )
Py ——X M M

Note that d(6;) = Dy (pellpn,)

: Solve Eq. (5) f‘i

Fig. 1: Illustration of the proposed FINE method.

where F is any class of functions 7" : 2 — R satisfying the
integrability constraints of the Donsker-Varadhan representa-
tion [10], and €2 is a compact domain that the two distributions
Py and Py Py belong to. Here, I(-) and H(-) denote the
mutual information and the entropy, respectively. Note that the
equality in (8) is the Donsker-Varadhan representation. Belg-
hazi et al. utilize a well-known property of neural networks
stated as the universal approximation theorem. The idea in [10]
is to treat 1" as a neural network and the mutual information
1(Y, Z) is estimated by using the observed data to train 7" such
that Ep, , [T] —log (Ep, p, [eT]) is maximized. After training,
the trained objective function value reads an estimate of the
mutual information. Note that the method of MINE can be
applied to estimate a general f-divergence [17].

Our idea is to compute D;(pg|lp,) in (5) by using the
observed data to train a neural network 7" such that E,,[T] —
log (E,, [e”]) is maximized. Since F(6) contains d(d +1)/2
different elements, we need to compute Dj(pg|lpy) for M
different perturbations of § where M > d(d+ 1)/2. Then we
can obtain an estimate of F(0) by solving (5).

Letn; = 0+6; withi =1,..., M and let X € RV*X and
X; € RVXK denote the data sets observed from pg and py,,
respectively. Here, N and K are the number of data samples
and the size of each sample, respectively. A neural network
T; is used to estimate the f-divergence d(d;) = Dy (pe||pn,)
based on X and X,. Specifically, T; takes a vector of size
K as the input and returns a scalar as the output. Thus, X
and X; are the input data sets of 7. Let z = T3(X) € RV
and z;, = T;(X;) € RY. Then T, is trained to maximize
17z/N — log(17 exp{z;}/N), which is used as an estimate
of d(4;). For notational simplicity, we use exp{z;} to indicate
that exp{-} is applied to z; element-wise. An illustration of
the proposed FINE is given in Figure 1.

Once the f-divergences have been obtained, we need to
solve (5) for F(0) under the constraint that F(0) is a sym-
metric positive semi-definite (PSD) matrix. We vectorize F(0)
by including the distinct upper triangular values of F(0) and
convert (5) to a linear function of this quantity. Let
f: [Fll,.,Fdd,FlQ,,F1d7F237.

P, Flg—ya)”

where Fj; is the element in the i-row and j-column of F (@),
and let

W = (67, ..., 004,2010i2, ..., 28:16:a, - - -, 28i(a—1)0:a) ",
where i = 1,..., M, d;; is the the j-element of &;. Denote
U = [uy,...,uy]?, then we have a linear system 2d = Uf

where d = [d(81),...,d(8)]T. Using the least square (LS)
estimator, we can find an estimate of f as

fis = 2(UTU) 'UTd. (10)

This LS estimator, however, does not ensure that the resulting
estimate is positive semi-definite. So we employ a semi-
definite program (SDP) as follows [9]:

12d — Uf|3

minifmize
subject to fk:f,lgs, k=1,...,d (11)
mat(f) = F(0) = 0.
where f, and fLS are the k-th element of f and f'S, respec-
tively. The mat(-) operator converts the vectorized FIM f to a
full matrix representation F(0). To ensure the symmetric PSD
requirement, we only need to refine the off-diagonal elements
of F(8), which explains the constrains fj, = f};s, k=1,...,d.
B. Random Parameters

In many systems, the operating parameters 6 are not deter-
ministic, but random. This leads to the study of the B-FIM B.
Let 7(0) be the distribution of 6, then

B= —EXﬂ [Hg(logp(x,O))]
= —Eg [Hog (logp(0))] — Eox [He (log p(z|0))]
F(m) +Eq [F(0)].

12)

As can be seen from (12) that the B-FIM B does not depend
on a particular value of @ and consists of two terms. The
first term is the information of the prior distribution and the
second term is the expected Fisher information. Some closely-
related studies about the Bayesian Carmér-Rao bound (BCRB)
were presented in [18] and [19, Chapter 7]. To the best of
our knowledge, the relation between the f-divergence and the
Bayesian Fisher information has not been stated formally in
the literature. Here, we show that the relation between the B-
FIM and the f-divergence follows an expression that is similar
to the one in (5) by Theorem 1 below.

Theorem 1. Consider a distribution Pxg with the pdf p(x, 0+
) and another distribution Qx¢ with the pdf p(z,0), where
0 € © C R is a random parameter, and 6 € R is a small
perturbation. For any convex function f satisfying f(1) = 0
and (1) =1, the f-divergence between Pxg and Qxg

Dy (Pxol|Qx0) ://f (W) p(x,0)dzdd  (13)

can be approximated as follows:

1
Dy (Pxo||Qx0) ~ 5523 (14)
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where B is the Bayesian information and defined as

1
// (8 og p(z, ) ) p(z, 0)dzdo. (15)
Proof. Using the Taylor expansion about 6, we have
p(x, 6 +0) = p(x,0) + p'(x,0)d + 0(6), (16)

and thus

Df(PX9|QX9)//f<1+Z;((z:?)5

) p(z,0)dzdo.

a7
Using the Taylor expansion of f about 1, we have
1
FA+8) = F)+ WA+ S (DA +0(A%) = LAz,
(18)

The approximation in (18) is obtained since f(1) =0, f'(1) =
0, and f”(1) = 1. We can always have f’(1) = 0 because
Dy, (PQ) = Dy(P|Q) whete £.(t) = f(t)—c(t—1), which
means if f(¢) does not satisfy f/(1) = 0, we can replace f(t)
by f.(t) with ¢ = f’(1). Applying (18) to (17), we obtain

2 2
o 9) ) p(z,0)dzdf = %B

Dy(Pxol|@x6) = 522// (Z;)((x a)

Although Theorem 1 is stated for one dimensional pa-
rameters, for higher dimensional parameters @, one can use
the same reasoning and obtain Dy(Pxg||Qxe) ~ 56TB.
Hence, the relation between the f-divergence and the Bayesian
Fisher information follows an expression similar to the case
of deterministic parameters in (5). Therefore, FINE can be di-
rectly applied to this Bayesian framework. However, it should
be noted that the data samples in this Bayesian framework are
generated from the joint distributions of X and 6.

O

IV. COMPLEXITY ANALYSIS AND TEST RESULTS
A. Complexity Analysis

The complexity of FINE mostly depends on the time for
training the neural networks, which is O(JW N) [20] where J,
W, and N are the number of epochs, the number of trainable
parameters, and the number of training samples, respectively.
For reliable estimation, N often needs to be large, and so JW
is relatively small compared to N, making the complexity of
FINE roughly O(N). Compared to the empirical estimator
proposed by Berisha and Hero [9], their method needs to
construct the MSTs of dense graphs whose complexity is
O(N?). In the following, we will show that the run time of
FINE is significantly lower than the run time of the estimator
proposed in [9].

B. Test Results

Here we numerically validate and evaluate the performance
of FINE for both cases of deterministic and random param-
eters. We used neural networks with only one hidden layer
whose width is five times the width of the input layer and the
ReLU activation function is used.

1) Deterministic Parameters: Consider a K-dimensional
Gaussian distribution as V' (0, I ). The objective is to estimate
the FIM F at 8 = 0. It should be noted that d = K in this
scenario. The FIM has a simple closed form as Fy; . = L
Each element of § is drawn from A (0, 0.05). We use the same
data size of N for all data sets X, X1,...,X . Weset K =4
and M = 5d(d + 1)/2. The proposed FINE is compared with
the method proposed by Berisha and Hero in [9]. Test results
are given in Figure 2. The normalized mean squared error
(NMSE) is defined as NMSE = ||F — F,yc|2/d?. It can be
seen that the proposed FINE outperforms the method in [9] in
terms of both accuracy and computational complexity. The run
time of the method by Berisha and Hero scales quadratically
with N whereas the run time of the proposed FINE decreases
because it is found that the neural network converged faster
with larger data sets.

2) Random Parameters: Consider the transmission of L
BPSK symbols @ = [ai,...,ar]T over an additive white
Gaussian noise (AWGN) channel affected by carrier phase
offsets @ = [0, ...,0.]7, the received signal is given as

0
Yy = el 4 ny,

where n; is the additive white Gaussian noise and distributed
as N(0,02) and 6 follows the Wiener phase-offset evolution,
ie, 0, = 0,1 + w;, where w; ~ N(0,02). The receiver
needs to estimate the carrier-phase offsets 6. In [21], a closed-
form BCRB was derived for this scenario. In addition, the
authors also proposed an asymptotic bound, which is referred
to as ABCRB. We adopt the observation block length L = 4
and various values of o2. Comparison results are shown in
Figure 3. It is observed that with a low value of o2, both
the estimated BRCB (by FINE) and ABCRB are close to the
true BCRB. Figures 3b and 3c show that our proposed FINE
produces remarkable improvements over the ABCRB when
o2 is higher. Thus, the results in Fig. 3 verify the efficacy of
the proposed FINE in case of random parameters.

V. CONCLUSION

This paper proposes a new method to estimate the Fisher
information based on neural networks. The proposed FINE
approach has a low-computational complexity, high estimation
accuracy, and is applicable for both cases of deterministic
and random parameters. Numerical test results show that the
proposed FINE not only performs the estimation task faster
but also yields more accurate estimates compared to existing
works. For example, the computational complexity of the
proposed FINE is roughly linear with the data size, whereas
the computational complexity of an existing method in [9]
scales quadratically with the data size. Another important
advantage of the proposed approach is that it can be applied
to systems where the underlying statistical model is unknown
or at a high level of sophistication since only observed data
samples are needed in the estimation process.
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