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Abstract—Multifractal analysis provides the theoretical and
practical tools for describing the fluctuations of pointwise re-
gularity in data and has led to many successful applications in
signal and image processing. Originally limited to the analysis
of single time series or images, a definition of multivariate
multifractal analysis, i.e., the joint multifractal analysis of several
data components, was recently proposed and was shown to
effectively quantify local or transient dependencies in data
regularity, beyond linear correlation. However, the accurate
estimation of the associated matrix-valued joint multifractality
parameters is notoriously difficult, thus limiting its practical
usefulness. Leveraging a recent statistical model for bivariate
multifractality, the goal of this work is to define and study
Bayesian estimators designed to bypass this difficulty. Specifically,
we study the original use of two different priors, combined
with two different averages (arithmetic and Karcher means),
for bivariate multifractal analysis. Monte Carlo simulations with
synthetic data allow us to appreciate their relative performance
and to conclude that our novel and original estimator based
on a scaled inverse Wishart prior and the Karcher mean yields
particularly favorable results with up to 5 times smaller root-
mean-squared error than previous formulations.

Index Terms—Multifractal analysis, multivariate data,
Bayesian estimation, wavelet leaders, Karcher mean

I. INTRODUCTION

Context. Multifractal analysis (MFA) is a rich and versatile
mathematical analysis and modeling framework that makes it
possible to characterize a function X(t) : Rd → R based
on the geometry of the fluctuations of its pointwise regularity
[1]. Over the last decades, MFA has been successfully used
in a broad range of contexts of different natures (cf., e.g.,
[2] and references therein). However, this success has been
mainly limited to the analysis of univariate data (scalar time
series or single channel images). Yet, they are often the
constituting parts of multivariate data (e.g., physical quan-
tities jointly registered by several sensors, or several bands
in a color space). Conducting a joint analysis instead of
individually analyzing the data components provides a richer
characterization of multifractality, and in particular unravels
the dynamics, coupling mechanisms and dependencies among
the different components. To this end, a theoretical foundation
for a multivariate multifractal analysis has recently been pro-
posed [3], [4]. First tests on synthetic data confirmed that the
multivariate multifractality parameters can indeed effectively

capture and quantify transient or local data dependencies that
cannot be accounted for by second order statistics such as the
linear correlation function [5], [6]. However, these experiments
also revealed that the accurate estimation of the associated
cross-multifractality parameters is challenging, in particular
for small sample sizes.
Related works. The estimation of multifractality parameters
is standardly performed by means of linear regressions for
multiscale statistics of specific multiresolution coefficients
in log-diagrams, see Section II-B and, e.g., [7]. To reduce
the estimation variance for small sample size, a statistical
modeling and estimation framework for the multifractality
parameters of bivariate data has recently been proposed [8]
(see, e.g., [9], [10] for earlier works for univariate data). The
strategy consists in conducting estimation with a Bayesian
model for the matrix-valued multivariate multifractality para-
meters of interest. The preliminary numerical results obtained
in [8] using independent inverse Wishart prior distributions
are encouraging and indicate that the Bayesian estimation
can significantly outperform standard linear regression based
estimation. However, [8] also showed that estimations can be
significantly biased, in particular for small sample sizes.
Goals, contributions and outline. The goal of this work
is to propose and study several alternative Bayesian models
and estimators for bivariate multifractal analysis and to com-
pare their estimation performance, with specific focus on the
critical issue of accurate estimation for small sample size. To
this end, we first briefly summarize in Section II theoretical
bivariate multifractal analysis and practical formalisms and the
statistical model proposed in [8]. Our main contributions are as
follows. First, we devise a novel Bayesian model for bivariate
multifractal analysis, making use of more flexible scale inverse
Wishart priors than the standard inverse Wishart priors of [8],
and specify the conditional distributions of a Gibbs sampler
for approximating the parameters of interest via simulation (cf.
Section III). Second, we advocate the use of a mean associated
with a Riemanian metric (aka, the Karcher mean [11]) instead
of the usual arithmetic mean for the numerical evaluation of
the minimum mean square error (MMSE) estimator for the
matrix-valued multifractality parameters. Finally, in Section
IV, we compare in detail four different Bayesian estimators
(combining inverse Wishart/scaled inverse Wishart priors and
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arithmetic/Karcher means) by means of various Monte Carlo
simulations performed on synthetic data. Our results show
that the proposed novel estimator combining a scaled inverse
Wishart prior distribution and the Karcher mean significantly
improves estimation performance for small sample sizes.

II. BIVARIATE MULTIFRACTAL ANALYSIS AND
STATISTICAL MODELING

A. Bivariate multifractal spectrum

Bivariate multifractal analysis amounts to characterizing
the joint and the single-component fluctuations along time
of the pointwise regularity of a signal or function X(t) =
(X1(t), X2(t)) ∈ R2, t ∈ R. The pointwise regularity of the
rth component of X is usually quantified by the so-called
Hölder exponent hXr (t) ≥ 0, see, e.g., [1] for details; the
closer hXr (t) to 0, the more irregular Xr around position t.
Therefore, a global geometrical description of the pointwise
regularity of X is provided through the so-called bivariate
multifractal spectrum D(h1, h2) of X [3], [4], [12]. It is
defined as the collection of Hausdorff dimensions dimH of
the sets of points t with the same pair of Hölder exponents
h = (h1, h2), i.e.,

D(h) ≜ dimH

{
t : (hX1

(t), hX2
(t)) = h

}
.

The state-of-the-art procedure for the estimation of the mul-
tifractal spectrum is constructed from multiscale statistics of
wavelet leaders and is summarized next [1], [3], [4], [7].

B. Bivariate multifractal formalism using wavelet leaders

Wavelet leaders. Let ψ denote a mother wavelet, which
is an oscillating reference pattern that is characterized by its
number of vanishing moments Nψ , a positive integer defined
as ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ − 1,

∫
R t

nψ(t)dt ≡ 0
and

∫
R t

Nψψ(t)dt ̸= 0. It is designed such that the collection
{ψj,k(t) = 2−j/2ψ(2−jt − k)}(j,k)∈(Z,Z) of its dilated and
translated templates forms an orthonormal basis of L2(R) [13].
The L1 normalized discrete wavelet transform coefficients
dX(j, k) of X ∈ R are defined as dX(j, k) = 2−j/2⟨ψj,k|X⟩,
and the wavelet leaders of X are defined as

LX(j, k) ≜ sup
λ′⊂3λj,k

|dX(λ′)|,

where λj,k = [k2j , (k + 1)2j) denotes the dyadic interval
of size 2j and 3λj,k stands for the union of λj,k with its 2
neighbors.
Bivariate multifractal formalism. The bivariate cumulants
Cp1p2(j) of the vector of log-leaders at scale j, ℓX(j, k) ≜
(lnLX1

(j, k), lnLX2
(j, k)) ∈ R2, k ∈ {1, . . . , nj}, can be

shown to take the form Cp1p2(j) = c0p1p2 + j cp1p2 ln 2, with
p1+p2 ≥ 1 [5], [14]. The coefficients cp1p2 yield the following
approximation of D(h)

D(h1, h2) ≈ 1 +
c02b

2

(
h1 − c10

b

)2

+
c20b

2

(
h2 − c01

b

)2

− c11b

(
h1 − c10

b

)(
h2 − c01

b

)
, (1)

where c20, c02 < 0, b ≜ c20c02− c211 ≥ 0 [6] and (c10, c01)
indicates the position of the maximum of D(h), which corres-
ponds to the average degrees of data regularity. However, this
position does not convey information on the joint multifracta-
lity (aka joint regularity fluctuations). The coefficients c20 and
c02 quantify the amount of pointwise regularity fluctuations
(multifractality) for each component independently and c11
characterizes the coupling between the regularity fluctuations
of the components. The standard estimation strategy for the
coefficients c01, c10, c02, c20, c11 relies on linear regressions of
sample cumulants across scale j.

C. Statistical model

The centered vector of the logarithm of wavelet leaders
lX(j, k) = [lX1

(j, k), lX2
(j, k)]

T can be well modeled as a
Gaussian random vector [8], with a point covariance matrix
parametrized by two 2× 2 positive definite (p.d.) real-valued
matrices Σ1 and Σ2, i.e., lX(j, k) ∼ N (0,Σ1 ln 2

−j+Σ2).

Specifically, Σ1 ≜ −
(
c20 c11
c11 c02

)
contains the multifractal

parameters of interest and Σ2 is used for model adjustment.
The joint distribution for the vectors lX(j, k) and lX(j′, k′) at
same scale, j = j′, has a fixed non-trivial temporal covariance,
while vectors at different scales, j ̸= j′, are modeled as inde-
pendent. We resorted to a Whittle approximation [15], [16] to
diagonalize the temporal covariance and the joint distribution
in the Fourier domain, leading to a model for the Fourier
coefficients zj = FIj (lX(j, ·))∈ C(nj−1)×2. The operator
FIj (·) computes the discrete Fourier coefficients contained in
Ij = J⌊(−nj − 1)/2⌋, nj − ⌊nj/2⌋K \ {0} (Ja1, a2K denotes
the set of integers ranging from a1 to a2) with frequencies
{ωm = 2πm/nj}m∈Ij and ⌊·⌋ truncates to integer values. The

likelihood for z =
[
zTj1 , . . . ,z

T
j2

]T ∈ CM×2 reads

p(z | Σ1,Σ2) =
∏j2

j=j1
p(zj | Σ1,Σ2)

∝ (detΩ)−1 exp
(
−z̃HΩ−1z̃

)
, (2)

where z̃ is the 2M×1 vector resulting from the concatenation
of the two components of z and ·H denotes the conjugate
transpose operator. The matrix Ω ≜ Σ1 ⊗G1 +Σ2 ⊗G2 is a
real-valued block diagonal p.d. covariance matrix, where the
operator ⊗ denotes the Kronecker product. In particular, the
matrices G1 and G2 are deterministic diagonal matrices that
subsume the covariance model in time.

In order to facilitate inference, we used in [8] a data
augmentation strategy for model (2), introducing a complex-
valued vector of latent variables u ∈ CM×2, with the follo-
wing conditional distributions z | u,Σ1 ∼ CN (u,Σ1 ⊗G1)
and u | Σ2 ∼ CN (0,Σ2 ⊗ G2), where CN denotes the
complex Gaussian distribution, where the pseudo-covariance
matrix is omitted since it is the zero matrix. This results in
the augmented likelihood

p(z,u | Σ1,Σ2) ∝ p(z | u,Σ1)p(u | Σ2). (3)

By construction, the likelihood (2) is obtained by marginali-
zing (3) with respect to u. The advantage of using (3) with
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respect to (2), is that, in (3), the matrix-valued parameters
Σ1 and Σ2 are no longer additively tied but conditionally
independent.

III. BAYESIAN MODELS AND ESTIMATION

A. Bayesian models

Likelihood. The Bayesian models investigated in this paper
are based on the augmented likelihood (3), which is the
product of complex Gaussian distributions with covariance
matrices Σ1 and Σ2.
Inverse Wishart. The natural conjugate prior for Σi is the
inverse Wishart (IW) prior [17], i.e., for i ∈ {1, 2}, Σi ∼
IW(νi,Λi), with νi > 3 (νi ∈ R) degrees of freedom and a
2−dimensional p.d. real-valued scale matrix Λi.
Scaled inverse Wishart. An alternative to the IW prior is
the scaled inverse Wishart (SIW) prior studied in [18], which
decouples the matrix Σi as Σi ≜ ∆iQi∆i, where the random
matrices Qi and ∆i are independent, Qi ∼ IW(νi,Λi), and
∆i is a diagonal matrix with independent diagonal elements
δir = [∆i]rr and δir ∼ LN (βir, α

2
ir), where LN is the

log-normal distribution, i.e., p(Σi) = p(Qi)p(δi1)p(δi2),
i ∈ {1, 2}. It was shown that using this decomposition and
semi-separate priors on standard deviations and correlation
coefficients provides greater flexibility than the IW prior [18].
Posterior. The posterior distribution associated with the
proposed Bayesian model for Σ1, Σ2 and the latent vector
u can be computed from the Bayes theorem

p(Σ1,Σ2,u | z) ∝ p(z,u | Σ1,Σ2)p(Σ1)p(Σ2), (4)

which can be used to define the marginal MMSE estima-
tor Σ̂

MMSE
i ≜ E [Σi | z,u]. This estimator is difficult to

be expressed using a simple closed form expression. Thus,
we proposed to compute an approximation resulting from a
Markov chain Monte Carlo (MCMC) algorithm [19].

B. Gibbs samplers

In order to estimate the unknown model parameters from
the posterior, we consider a Gibbs sampler, successively
generating samples {Σ(λ)

1 ,Σ
(λ)
2 ,u(λ)}Nmc

λ=1 according to the
conditional distributions of (4), either using the IW prior or
its scaled version.
Inverse Wishart. When using an IW prior for Σ1 and Σ2,
the resulting conditional distribution are

Σi | z,u ∼ IW(νi + 2M,Λi + Φ̃i), (5)
u | z,Σ1,Σ2 ∼ CN (µ̃, Σ̃), (6)

where Φ̃1 = 2Re(
∑M
s=1(zs − us)(zs − us)

Hg−1
1s ) and

Φ̃2 = 2Re(
∑M
s=1 usu

H
s g

−1
2s ), with zs = zT (s),us =

uT (s) ∈ C2×1 and gis = [Gi]ss for i = {1, 2}. Moreover,
Σ̃ is a block diagonal matrix whose sth block is Σ̃s =[
(g1sΣ1)

−1 + (g2sΣ2)
−1

]−1
, and µ̃s = Σ̃s(g1sΣ1)

−1zs.
Scaled inverse Wishart. Assuming an SIW prior for Σi,
the conditional distributions of Σ1 and Σ2 in (5) are replaced
by the following sampling steps for all i, r = {1, 2}

Qi | ∆i, z,u ∼ IW(νi + 2M,Λi +∆−1
i Φ̃i∆

−1
i ), (7)

δir ∼ f(δir) = p(δir | Qi, {δir′}r′ ̸=r, z,u). (8)

Indeed, f(δir) is not a standard distribution and is sampling
using the log-conditional distribution

ln(f(δir)) =− (2M + 1) ln(δir)− [Q−1
i ]rr[Φ̃i]rr(2δ

2
ir)

−1

− δ−1
ir δ

−1
ir′ [Q

−1
i ]rr′ [Φ̃i]rr′

− (ln(δir)− βir)
2/(2α2

ir) + constant.

We thus use a Metropolis-Hastings random walk procedure for
sampling each δir in turn. The proposal distribution is chosen
here as a real-valued Gaussian distribution whose location
parameter is the current value δ◦ir and the scale parameter σ2

δir
is adaptively chosen to ensure an acceptance rate between 0.4
and 0.6 [19]. We insert the draws of Qi and {δir}2r=1 into
Σi ≜ ∆iQi∆i to generate samples of Σi. The conditional
distribution of u | z,Σ1,Σ2 is similar to (6).

The chosen prior distributions for Σ1 and Σ2 guarantee
the sampled matrices are p.d. matrices along the iterations.
Finally, after a burn-in period, where the first Nbi samples are
discarded, the MMSE estimator of Σi is approximated by ave-
raging over the set of p.d. real-valued matrices {Σ(λ)

i }Nmc
λ=Nbi+1,

where Σ
(λ)
i is the λth matrix generated by the sampler.

C. Approximation of the MMSE estimator

The average over the space of the p.d. real-valued matrices
can be computed using the arithmetic mean associated with
the Euclidean metric, Σ̂

A
i = (Nmc − Nbi)

−1
∑Nmc
λ=Nbi+1 Σ

(λ)
i ,

which is by construction also p.d. Alternatively, one can use
the mean associated with the Riemannian metric (the geome-
tric mean or Karcher mean), see [11] for details. The Karcher
mean Σ̂

K
i is the unique p.d. symmetric matrix-valued solution

to the nonlinear matrix equation
∑Nmc
λ=Nbi+1 ln((Σ

(λ)
i )−1X) =

0 that can be solved, e.g., using the iterative algorithm
proposed in [20]. Unlike the arithmetic mean, the Karcher
mean has the interesting property that it commutes with the
matrix inverse [11].

Below, we denote by SIW(·) and IW(·) the MMSE esti-
mators resulting from using the IW or SIW priors, and use
the sub-indexes (·)A and (·)K for the arithmetic and Karcher
means.

IV. PERFORMANCE EVALUATION

The estimation performance is evaluated by comparing
the estimates θ̂ of θ ∈ {−c20,−c02,−c11} obtained using
100 realizations of a bMRW (defined in the next paragraph)
for different sample sizes and a large range of values of
multifractality parameters. More precisely, we computed the
bias (BIAS), b(θ̂) = Ê[θ̂] − θ, the standard deviation (STD),

s(θ̂) =

√
V̂ar[θ̂], and the root mean square error (RMSE),

r(θ̂) =

√
b(θ̂)2 + s(θ̂)2 of the estimates, where Ê[.] and V̂ar[.]

denote the sample mean and the sample variance.
Bivariate multifractal random walk (bMRW). The cons-
truction of a bMRW process X(t) = (X1(t), X2(t)) [5] is
based on two pairs of stochastic processes: a pair of incre-
ments of fractional Brownian motions (G1(t), G2(t)), which
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Fig. 1. bMRW estimation performance for N ∈ {26, 27, 28, 29, 210}, j1 = {1, 1, 2, 2, 2} and j2 = log2(N)− 4.

is determined by two self-similarity parameters H1 and H2

and a point covariance Σss, and a pair of Gaussian processes
(ω1(t), ω2(t)) with prescribed covariance function Σmf, with
entries given by [Σmf]rv (k, l) = [ρmf]rv λrλv ln

(
T

|k−l|+1

)
,

with r, v ∈ {1, 2}, for |k − l| ≤ T − 1 and 0 otherwise,
where T is an arbitrary integral scale. To simplify notations,
we consider [ρmf]11 = [ρmf]22 = 1, and [ρmf]12 = ρmf. Both
pairs of processes are numerically synthesized as described
in [21]. Finally, each component {Xr}2r=1, of bMRW is
defined as the primitive of the product process Greωr . The
bivariate multifractality properties of bMRW are given by
c10 = H1 + λ21/2, c01 = H2 + λ22/2, c20 = −λ21, c02 = −λ22,
and c11 = −ρmfλ1λ2 [5], [22]; in addition, ∀(p1, p2) such that
p1 + p2 ≥ 3, cp1p2 ≡ 0.
Monte Carlo simulations and parameter settings. The
parameters of the bMRW are set to (H1, H2) = (0.72, 0.72),
λ1 =

√
0.02, λ2 ∈ {

√
0.02,

√
0.04,

√
0.06,

√
0.08,

√
0.1},

Σss = I2, ρmf = 0.5, sample size N ∈ {26, 27, 28, 29, 210}
and the integral scale is set to T = N . The wavelet analysis
is conducted with a Daubechies least asymmetric wavelet,
with Nψ = 3 and scales ranging from j1 = {1, 1, 2, 2, 2}
to j2 = log2(N) − 4. The Gibbs samplers use a burn in of
Nbi = 1000 samples and a total number of iterations equal to
Nmc = 2000. The hyperparameters for the (scaled) inverse
Wishart priors are set to ν1 = ν2 = 4, Λ1 = Λ2 = I2
as in [23]. In addition, for the scaled inverse Wishart prior,
we used cross validation to set (βir, α

2
ir) = (0.1, 1), for all

i, r ∈ {1, 2}.
Performance vs. sample size. Fig. 1 plots averages, STD
and RMSE for the estimates obtained from the SIWA, SIWK ,
IWA and IWK algorithms as a function of the sample size N .
We observe that when the sample size increases, the average

for each estimation approaches the true value of the parameter,
indicating that the estimators are asymptotically unbiased. One
can also observe that the STD and RMSE values decrease as
N increases, as expected.

A closer look on the respective performance leads to the
following observations. First, when the sample size is small,
the BIAS of the SIW(·) estimators of c20 and c02 is signifi-
cantly smaller (up to 40 times) when compared to the IW(·)
estimators, whereas for c11 the BIAS values of these estimators
are similar. As mentioned above, the estimators converge to
the same values for large sample sizes. In general, the STD
are slightly larger for SIW(·). Overall, this leads to comparable
RMSE values for large sample size, and to better performance
for SIW(·) for small sample sizes.

The arithmetic and Karcher mean yield similar performance
for large sample sizes. For small sample size, the Karcher
mean has better performance. This small sample regime will
be investigated with more details in the next paragraphs.
Performance vs. multifractal parameter values. Table I
shows the estimation performance for small sample size
N = 26 and for several multifractality settings, i.e., −c02 ∈
{0.02, 0.04, . . . , 0.1} and leads to the following conclusions.

A comparison of the results obtained with the different
priors shows that the estimators SIW(·) have significantly
reduced BIAS for c20 and c02, and similar BIAS for c11
when compared to IW(·). This conclusion is valid for all
levels of multifractality for c02. Moreover, the STD values
are smaller for SIW(·) than for IW(·), leading overall to
significantly reduced RMSE for SIW(·) in all cases. As far
as the matrix averages are concerned, smaller RMSEs are
consistently obtained when the Karcher mean is used to
approximate the MMSE estimator.
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TABLE I
BMRW ESTIMATION PERFORMANCE FOR N = 26 AND

−c02 ∈ {0.02, 0.04, 0.06, 0.08, 0.1} (BEST RESULTS IN BOLD).

−c02 0.02 0.04 0.06 0.08 0.1

−
c 2

0
=

0
.0
2

B
IA

S

SIWA 0.0252 0.0266 0.0299 0.0278 0.0237
SIWK 0.0075 0.0099 0.0130 0.0107 0.0073
IWA 0.1052 0.1045 0.1063 0.1061 0.1029
IWK 0.0945 0.0938 0.0953 0.0948 0.0922

ST
D

SIWA 0.0272 0.0307 0.0386 0.0394 0.0301
SIWK 0.0181 0.0229 0.0295 0.0278 0.0208
IWA 0.0339 0.0304 0.0376 0.0410 0.0330
IWK 0.0295 0.0267 0.0328 0.0349 0.0286

R
M

SE

SIWA 0.0370 0.0407 0.0488 0.0482 0.0383
SIWK 0.0196 0.0249 0.0322 0.0298 0.0221
IWA 0.1105 0.1088 0.1128 0.1138 0.1080
IWK 0.0990 0.0975 0.1008 0.1011 0.0965

−
c 0

2

B
IA

S

SIWA 0.0301 0.0209 0.0047 0.0027 0.0015
SIWK 0.0118 0 0.0179 0.0270 0.0335
IWA 0.1080 0.0985 0.0852 0.0728 0.0703
IWK 0.0968 0.0863 0.0719 0.0589 0.0540

ST
D

SIWA 0.0378 0.0376 0.0408 0.0610 0.0717
SIWK 0.0280 0.0291 0.0301 0.0481 0.0518
IWA 0.0386 0.0334 0.0419 0.0483 0.0620
IWK 0.0337 0.0292 0.0362 0.0420 0.0537

R
M

SE

SIWA 0.0483 0.0430 0.0411 0.0611 0.0717
SIWK 0.0304 0.0291 0.0350 0.0551 0.0616
IWA 0.1147 0.1040 0.0950 0.0874 0.0937
IWK 0.1025 0.0911 0.0805 0.0723 0.0762

−
c 1

1

B
IA

S

SIWA 0.0097 0.0109 0.0146 0.0171 0.0185
SIWK 0.0098 0.0123 0.0158 0.0184 0.0204
IWA 0.0105 0.0079 0.0116 0.0121 0.0140
IWK 0.0105 0.0085 0.0122 0.0130 0.0150

ST
D

SIWA 0.0060 0.0086 0.0085 0.0106 0.0103
SIWK 0.0028 0.0058 0.0053 0.0069 0.0063
IWA 0.0165 0.0168 0.0172 0.0189 0.0198
IWK 0.0145 0.0148 0.0151 0.0166 0.0171

R
M

SE

SIWA 0.0115 0.0139 0.0169 0.0201 0.0212
SIWK 0.0102 0.0136 0.0167 0.0197 0.0213
IWA 0.0196 0.0185 0.0208 0.0224 0.0242
IWK 0.0179 0.0171 0.0194 0.0211 0.0228

Overall, this leads us to conclude that for large sample size,
a precise choice of the prior and the averaging operation has
little impact on estimation performance. Conversely, for small
sample size, the estimator with best performance is the MMSE
estimator that combines the SIW prior with Karcher mean,
with up to 5 times smaller RMSE values.

V. CONCLUSIONS

This paper studied and compared four different Bayesian
estimators for the parameters of the bivariate multifractal
spectrum. These Bayesian estimators were based on a recent
statistical model for the likelihood of log-leaders. Moreover,
they combined the use of either an inverse Wishart prior or its
scaled version with two different averaging strategies (arith-
metic mean or Karcher mean) to approximate the marginal
minimum mean square error estimator of the unknown mul-
tifractality parameters. Various Monte Carlo simulations with
synthetic bivariate data demonstrated that all four combina-
tions lead to accurate parameter estimates and are essentially
equivalent for large sample sizes. For small sample size, our
results reveal that the novel estimator combining a scaled
inverse Wishart prior and the Karcher mean yields the best
results, with root mean square errors up to 5 times smaller
than those of the other estimators. Future work will extend
this study to multivariate images and focus on applications to
multi-component physiological signals.
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