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Abstract—The recently developed Matched Phase Reassign-
ment (MPR) gives a time-frequency local measure of phase
difference between short oscillatory transient signals. However,
the resulting phase estimate is not satisfactory as it has poor
resolution for high oscillatory frequencies. The MPR is also
sensitive to high noise levels and is computationally cumbersome.

In this paper, a novel reassignment method for phase difference
estimation is proposed and evaluated. In comparison to the MPR
the accuracy is increased and the computational time is reduced.
Simulations show that the proposed technique also outperforms
state-of-the-art methods in terms of efficiency. An illustrative
example of phase difference estimates of the electrical signals
measured from the brain is included.

I. INTRODUCTION

Time-frequency (TF) methods are used in many application
areas, such as vibration analysis, radar detection, geophysics,
and medicine. The measured signals are often time-varying
and of oscillatory character. State-of-the-art methods aim at
increased concentration of components and suppression of
cross-terms using the quadratic class of TF representations
[1]. More modern ridge detection methods aim to track the
frequency changes in the TF images. The TF reassignment
and synchrosqueezing techniques, [2]–[4], are well known
techniques for sharpening the ridges in a TF image, and
have in recent years been further developed e.g. in [5]–[7].
We have recently invented a matched reassigned spectrogram
(MRS) method, tailored to give perfect instantaneous time and
frequency mass localization for short oscillating transients,
[8]–[11].

We have also expanded the MRS into a matched phase
reassignment (MPR) method based on the reassigned cross-
spectrogram, [12]. For two phase synchronized oscillating
transient signals, the method gives perfect instantaneous time
and frequency mass localization. The MPR is thereby a TF
local measure of phase synchronization and can also be used
to measure the actual phase difference between short transient
signals by time-shifting one signal until perfect localization
is achieved. However, in its present form, the resulting phase
estimate is not satisfactory as it is limited by the sampling
frequency. Moreover, the MPR for phase-estimation is com-
putationally cumbersome, especially for low frequency signals.

Electroencephalography (EEG) is well suited for estima-
tion of the temporal dynamics of neural activity [13], and

with multi-dimensional measurements, the synchronization of
sources can be estimated on a ms time-scale. Oscillating
transients are an appropriate model of such event-related
responses in cognition experiments [14].

In this submission we further explore a novel technique to
measure the phase difference, and compare to commonly used
phase estimators, for different types of disturbances. We start
with a short presentation of the MRS and MPR techniques
in section 2 followed by a description of the proposed phase
estimator in section 3. In section 4, the performance of the
proposed technique compared to state-of-the-art estimators
is evaluated, especially for estimation of phase difference.
An example of phase estimates from transient responses in
the measured electrical activity from the brain is also given.
Conclusions are presented in section 5.

II. THE MATCHED REASSIGNMENT TECHNIQUE

The reassigned spectrogram of a signal x is defined as

RSh
x (t, ω) =

∫∫
Sh
x (s, ξ)δ(t−t̂(s, ξ), ω−ω̂(s, ξ))ds

dξ
2π

, (1)

where the integrals run from −∞ to ∞ and δ(t, ω) denotes
the Dirac-delta function. The spectrogram Sh

x is given by

Sh
x (t, ω) = Fh

x (t, ω)(F
h
x (t, ω))

∗ (2)

where ∗ denotes the complex conjugate. The Fourier transform
(FT) of x using window function h is defined as

Fh
x (t, ω) =

∫
x(τ)h∗(τ − t)e−iωτdτ. (3)

The reassignment vectors are further given by

t̂(t, ω) = t+ ctℜ
(
F th
x (t, ω)

Fh
x (t, ω)

)
(4)

ω̂(t, ω) = ω − cωℑ

(
F

dh/dt
x (t, ω)

Fh
x (t, ω)

)
, (5)

where ℜ and ℑ denotes the real and imaginary part respec-
tively. The reassignment vectors relocate the energy in (t, ω)
to a new point (t̂(t, ω), ω̂(t, ω)). Choosing ct = cω = 1 gives
the reassignment vectors known from [2], [3]. If the signal is
additionally assumed to be a oscillating transient of the form

x(t) = a(t− t0)e
−iω0t. (6)
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Furthermore assuming that the spectrogram uses a window
matching the signal envelope, such that h(t) = a(−t), the
Matched Reassigned Spectrogram (MRS) will perfectly local-
ize the signal energy to (t0, ω0) choosing ct = cω = 2 [8],
[9].

In [12], the MRS was further extended to a Matched Phase
Reassignment (MPR) technique based on cross-spectrograms.
For the MPR, we assume two oscillating transients with
different phases and amplitudes, such that

yn(t) = Anx(t)e−iϕn , n = 1, 2. (7)

The reassigned cross-spectrogram of y1 and y2 can be con-
structed as in (1), but the spectrogram is exchanged for the
absolute value of the cross-spectrogram

|Sh
y1,y2

(t, ω)| = |Fh
y1
(t, ω)(Fh

y2
(t, ω))∗|. (8)

The reassignment vectors are given by

t̂(t, ω) = t+ ctℜ

(
F th
y1
(t, ω)

Fh
y2
(t, ω)

+
F th
y2
(t, ω)

Fh
y1
(t, ω)

)
(9)

ω̂(t, ω) = ω − cωℑ

(
F

dh
dt
y1 (t, ω)

Fh
y2
(t, ω)

+
F

dh
dt
y2 (t, ω)

Fh
y1
(t, ω)

)
, (10)

where we find that

Fh
yn
(t, ω) = Ane

−iϕnFh
x (t, ω) (11)

F th
yn
(t, ω) = Ane

−iϕnF th
x (t, ω) (12)

F
dh
dt
yn (t, ω) = Ane

−iϕnF
dh
dt
x (t, ω). (13)

As a consequence of this, the MPR vectors will coincide with
the MRS vectors in (4) (5) if ∆ϕ = ϕ1 − ϕ2 = 0 and ct =
cω = 2 A1A2

A2
1+A2

2
, giving perfect localization in the TF-domain.

A. Relative phase estimation using MPR
In [12], the MPR was used for estimating the relative phase-

difference between two oscillating transients. As the relative
phase difference ∆ϕ corresponds to a time-shift k, it can be
reasonably estimated by the candidate time-shift kc which
gives the most localized energy in TF. This corresponds to
finding the time-shift which minimizes the Rényi entropy

RE =
1

1− α
log2

∫∫
A

(
RS(t, ω)∫∫

A
RS(s, ξ)ds dξ

)α

dt dω (14)

where α = 3 and A is a chosen area in TF [15]. However, the
technique is limited by the chosen sampling frequency, thus
fewer kc will correspond to phase differences between −π and
π for higher frequencies.

III. THE PHASE-SCALED REASSIGNMENT

In order to increase resolution of the relative phase estima-
tions, we propose a novel Phase-Scaled Reassignment (PSR)
approach using the following reassignment vectors

t̂(t, ω) = t+ c0ℜ

(
ct1

F th
y1
(t, ω)

Fh
y2
(t, ω)

+ ct2
F th
y2
(t, ω)

Fh
y1
(t, ω)

)
(15)

ω̂(t, ω) = ω − c0ℑ

(
cω1

F
dh
dt
y1 (t, ω)

Fh
y2
(t, ω)

+ cω2

F
dh
dt
y2 (t, ω)

Fh
y1
(t, ω)

)
, (16)

where ct1 , ct2 , cω1
and cω2

are tunable using candidate relative
phase differences ∆ϕc. Using the relations in (11)-(13), the
reassignment vectors can be simplified to

t̂(t, ω) = t+ c0ℜ
(
(ct1

A1

A2
e−i∆ϕ + ct2

A2

A1
ei∆ϕ)

F th
x

Fh
x

)
(17)

ω̂(t, ω) = ω − c0ℑ

(cω1

A1

A2
e−i∆ϕ + cω2

A2

A1
ei∆ϕ)

F
dh
dt

x

Fh
x

 , (18)

where the indexing of Fh
x (t, ω), F

th
x (t, ω), F

dh
dt
x (t, ω) has been

dropped for convenience.
Perfect localization can be achieved for two sets of con-

stants. In the first set, only one term in (15) and (16) is
included and the constants are either defined as

c0 = 2 (19)

ct1 = cω1 =
Â2

Â1

ei∆ϕc (20)

ct2 = cω2
= 0, (21)

or as ct1 = cω1
= 0, ct2 = cω2

= Â1/Â2e
−i∆ϕc , where Ân

is the estimated amplitude of signal n and ∆ϕc is a candidate
phase difference. If ∆ϕc = ∆ϕ, Â1 = A1 and Â2 = A2, (17),
(18) reduces to (4), (5) and perfect localization is achieved.
From hereon the reassignment made with this set of constants
will be referred to as PSR1.

The other set of constants include both terms, such that

c0 = 1 (22)

ct1 = cω1
=

Â2

Â1

ei∆ϕc (23)

ct2 = cω2
=

Â1

Â2

e−i∆ϕc , (24)

which we will refer to as PSR2. In the same way as before,
perfect localization is achieved when ∆ϕc = ∆ϕ, Â1 = A1

and Â2 = A2.

A. Relative phase estimation using PSR

The PSR can be used to estimate the phase difference
between two oscillating transients. For the PSR, the estimated
phase difference ∆ϕ̂ is given by the candidate phase difference
∆ϕc which minimizes the Rényi entropy of the reassigned
cross-spectrogram. This is exemplified in Fig. 1, where the
Rényi entropy is plotted for different candidates ∆ϕc. It is
clearly seen that the PSR cross-spectrogram becomes more
peaked the closer ∆ϕc is to the true ∆ϕ. In contrast to
the MPR estimations, this technique is not limited by the
chosen sampling frequency as ∆ϕc can be arbitrarily chosen.
Moreover, as the resulting phase estimates using either set
of constants are correlated, no precision can be gained by
averaging the estimates.
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Fig. 1. The Rényi entropy evaluated over reassigned cross-spectrograms, using different candidate phase differences ∆ϕc in the reassignment vectors. The
gray line represents the true phase difference between the signals, which is ∆ϕ = −π/5. The corresponding cross-spectrograms for two different ∆ϕc are
illustrated to the right.

B. The problem with using two terms

How will the number of terms used in (15) and (16)
affect the resulting phase-estimates? As the quadratic class of
distributions obey TF invariance, the analysis will be restricted
to (t0, ω0) = (0, 0). In [9], the following expressions were
derived

Fh
x (t, ω) = e−iωt

2 R1(t, ω) (25)

F th
x (t, ω) = e−iωt

2

(
I1(t, ω)−

t

2
R1(t, ω)

)
(26)

F
dh
dt
x (t, ω) = e−iωt

2

(
i
ω

2
R1(t, ω)− iI2(t, ω)

)
, (27)

where R1 is a real valued expression and I1 and I2 are purely
imaginary. From hereon, the indexing of Fh

x , F th
x , F

dh
dt
x , R1,

I1 and I2 will be dropped for convenience.
Let’s first consider PSR1, and let’s further assume that

∆ϕc = ∆ϕ+ ϵ, where ϵ is a small deviance from the sought
phase difference. In order to simplify the calculations we also
assume that the amplitudes are known and equal to one. Then,
the reassignment vectors in (17) and (18) can be simplified to

t̂(t, ω) = t+ 2ℜ
(
eiϵ

F th
x

Fh
x

)
=

= t+ 2ℜ

(
(cos (ϵ) + i sin (ϵ))

e−iωt
2 (I1 − t

2R1)

e−iωt
2 R1

)
=

= t+ 2 sin (ϵ)
iI1
R1

− cos (ϵ)t ≈ 2ϵ
iI1
R1

(28)

and

ω̂(t, ω) = ω − 2ℑ

(
eiϵ

F
dh
dt
x

Fh
x

)
=

= ω − 2ℑ

(
(cos (ϵ) + i sin (ϵ))

e−iωt
2 (iω2R1 − iI2)

e−iωt
2 R1

)
=

= ω + 2 sin (ϵ)
iI2
R1

− cos (ϵ)ω ≈ 2ϵ
iI2
R1

(29)

assuming that ϵ is sufficiently close to zero. Perfect localization
is achieved only when ϵ exactly equals zero.

When instead PSR2 is considered, (17) and (18) are sim-
plified to

t̂(t, ω) = t+ ℜ
(
(eiϵ + e−iϵ)

F th
x

Fh
x

)
=

= t+ ℜ

(
2 cos (ϵ)

e−iωt
2 (I1 − t

2R1)

e−iωt
2 R1

)
=

= t− cos (ϵ)t ≈ 0, (30)

and

ω̂(t, ω) = ω −ℑ

(
(eiϵ + e−iϵ)

F
dh
dt
x

Fh
x

)
=

= ω −ℑ

(
2 cos (ϵ)

e−iωt
2 (iω2R1 − iI2)

e−iωt
2 R1

)
=

= ω − cos (ϵ)ω ≈ 0, (31)

when ϵ is sufficiently small. The PSR2 will therefor be
perfectly localized in TF for several ∆ϕc close to ∆ϕ.

This causes the relative phase-estimates of PSR2 to become
less precise than those of PSR1. This is illustrated in Fig.
2 (a), where two 4 Hz oscillating Gaussian transients with
a relative phase of ∆ϕ = −π/5 are plotted. The signals
are further disturbed by additive Gaussian noise sequences
where the noise sequences are white and uncorrelated. The
Rényi entropy of the corresponding PSR cross-spectrograms
for different candidate phases ∆ϕc are plotted in Fig. 2 (b). It
is clearly seen that PSR2 will have difficulty finding a precise
estimate of the relative phase.

IV. SIMULATIONS

In all simulations, the real-part of the signals defined in
(7) are considered, where A1 = 1, t0 = 1.5 s, f0 = 4 Hz
and ϕ1 ∈ U(−π, π). The amplitude of the second signal was
A2 = 1, and the phase was given by ϕ2 = ϕ1−∆ϕ, where the
relative phase ∆ϕ was randomly selected from 32 different,
equally spaced candidates in [−π, π[. The signal envelopes are
given by Gaussian windows with scaling parameter σ = 20.
The signals are N = 400 samples long and are sampled with
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Fig. 2. In (a) the SNR=-3 is exemplified for two oscillating Gaussian
transients with f0 = 4 Hz, t0=1.5 s, σ = 20 and ∆ϕ = −π/5. In (b)
the Rényi entropies of the corresponding reassigned cross-spectrograms using
either PSR1 or PSR2 are plotted for different choices of ∆ϕc.

TABLE I
AVERAGE COMPUTATION TIME OVER 1000 SIMULATIONS EVALUATING 32

DIFFERENT CANDIDATES.

PSR1 PSR2 MPR
0.2598 s 0.3241 s 1.1698 s

a sampling frequency of Fs = 128 Hz. White Gaussian noise
is further added to the signals, where the signal-to-noise ratio
(SNR) is defined as the average signal energy within t0 ± 3σ
over the noise variance. In Fig. 2 (a), the signals for SNR=
−3 dB are exemplified. All simulations were performed on
MATLAB (R2020a) on a computer with a 11 Generation Intel
Core i7 (11700K) processor running at 3.60 GHz.

A. Comparison to the MPR

We start by comparing the relative phase estimations of the
PSR method to the previously proposed MPR method. The
two PSR methods were evaluated for the same 32 candidates,
∆ϕc, and the MPR was evaluated for the corresponding time
lags, kc = −16, ..., 15. One thousand simulations were made
for each SNR level.

The mean square error (MSE) of the resulting phase esti-
mates are plotted in Fig. 3. As expected, the PSR1 results in
lower MSE than the other two methods that use two terms
in the reassignment. The corresponding average computation
times are presented in Table I. As the MPR in contrast to PSR
computes new FTs for each kc, it is far more computationally
cumbersome than the PSR methods. Moreover, as the PSR1
needs fewer FTs than the PSR2, it is slightly faster. However,
it is worth noting that the computation time will scale with
the number of ∆ϕc. In the following simulations, the number
of evaluated ∆ϕc will be increased in order to improve the
estimation accuracy.

The methods were further compared for different signal
frequencies at SNR=0. Now, the relative phase-differences
were randomly simulated from U(−π, π), and the PSR meth-
ods were evaluated for 180 equally spaced candidates in
[−π, π[. As the MPR is limited by the sampling frequency,
it was evaluated for the maximum number of possible time-

-5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

PSR1

PSR2

MPR

Fig. 3. The resulting MSE of the two proposed PSR methods as well as the
previously proposed MPR method for estimation of phase-difference.

0 10 20 30 40 50 60
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0.4

0.6

PSR1

PSR2

MPR

Fig. 4. The MSE of the resulting phase estimates for different signal
frequencies at SNR = 0.

lags covering phase-differences between −π and π for each
frequency.

The simulation results are shown in Fig 4. We note that
the PSR estimates are consistent for all signal frequencies,
whereas the MSE using the MPR grows with increased fre-
quency. As fewer time-lags kc can be evaluated for higher
frequencies, the MSE naturally increases.

B. Comparison to state-of-the-art methods

The PSR1 method was also compared to the state-of-the-art
phase estimators Pearson’s linear correlation (CORR) and the
Hilbert transform. CORR was evaluated like the MPR for 32
different time-lags. The Hilbert transform was used to estimate
the instantaneous phase-difference ∆ϕ̂(tk) = ϕ̂1(tk)− ϕ̂2(tk)
for all K samples between 1 and 2 s, and was finally averaged
according to

∆ϕ̂H = arg

(
1

K

K∑
k=1

ei∆ϕ̂(tk)

)
. (32)

In this simulation, the second signal was further assumed
to be of varying amplitude such that A2 = A1 + δ, where
δ ∈ U(−0.5, 0.5). In the PSR1, the amplitude of each signal
was estimated as the square root of the maximum value in the
spectrogram.

The simulation results are presented in Fig. 5 where it
becomes clear that the PSR1 outperforms the two state-of-the-
art estimators in both high and low SNR. In (a), the percentage
correctly estimated phase differences for each method is
plotted against SNR. The estimate was considered correct if it
was less than 2.5◦ from the true value. As the CORR estimator
is limited by the sampling frequency in the same way as the
MPR method was, it is unsurprising that the accuracy of this
method is poor. In contrast, even though the Hilbert estimator
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Fig. 5. In (a), the percentage correctly estimated relative phases for different
SNR levels. The corresponding MSE of the estimates are plotted in (b).

is not limited by a grid of candidates, it is still outperformed by
the PSR1 even in high SNR. From (b) we draw the conclusion
that the PSR1 estimator is considerably more efficient than the
other estimators even in low SNR.

C. Phase difference estimation in EEG

Finally, we aim to estimate the relative phase-difference
between channels in a EEG data set. The data was measured
during visual stimulation. The subject had their eyes closed
and was presented with 9 Hz flickering light (Grass Photic
stimulator Model PS22C) for a duration of 1.0 s. The data
was recorded with a sampling frequency of 256 Hz using
a Neuroscan system with a digital amplifier (SYNAP 5080,
Neuro Scan, Inc.). Amplifier band-pass settings were 0.3
and 50 Hz. The phase differences for all channels relative
to the occipital channel Oz were estimated using the PSR1
method. A Gaussian window with an approximate length of
one second was used in the Fourier transforms and 180 equally
spaced candidate phase differences in [−π, π[ were evaluated.
Evaluation was limited to frequencies between 8 and 10 Hz.

The resulting estimates are illustrated in Fig. 6. The results
are expected, where the largest phase differences are found for
channels close to the eyes. The phase difference between Oz
and Fz was estimated to 2.44, which corresponds to a time
difference of 43 ms for a 9 Hz signal.

V. CONCLUSION

The Phase-Scaled Reassignment (PSR) is proposed to es-
timate phase-difference between two oscillating transient sig-
nals. In contrast to the previously proposed Matched Phase
Reassignment (MPR) method, it was analytically shown that
more efficient estimates could be made when only one term
was included in the reassignment vectors. This method was
further shown to outperform the state-of-the-art methods in
terms of efficiency in both high and low SNRs for white
Gaussian noise disturbance.

Fig. 6. The figure shows the estimated relative phases between all channels
and Oz placed at the back of the head.
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