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Abstract—In this paper, we tackle the issue of making adaptive
the reassignment of multicomponent signals using synchrosqueez-
ing transforms. Indeed, depending on the frequency modulation
of the modes making up these signals, the reassignment results
with synchrosqueezing transforms are significantly different de-
pending on the so-called order of the transform. In this paper,
we introduce a new technique to choose locally the best order of
the synchrosqueezing transform to represent a multicomponent
signal, and study its behavior in terms of mode reconstruction
on both simulated and real signals.

Index Terms—Synchrosqueezing transforms, short-time
Fourier transform, mode reconstruction.

I. INTRODUCTION

Linear Time-frequency representations (LTFRs) are widely
used to analyze multicomponent signals (MCSs) since they
enable the estimation of the instantaneous frequencies (IFs)
of their constituent modes as well as their reconstruction.
One of the most commonly used LTFR is the short-time
Fourier transform (STFT) [1] whose performance in terms
of IF estimation and mode reconstruction are dependent on
the choice of an analysis window [2]. To circumvent this
limitation of STFT a reassignment technique, called Fourier-
based synchrosqueezing transform (FSST), was developed in
[3], while alternative techniques aiming at making the STFT
more adaptive were proposed in [4], [5].

FSST is however well designed only to reassign MCSs
made of modes with small frequency modulation. Therefore
new approaches were developed to take into account this
aspect, through the so-called second-order synchrosqueezing
transform (FSST2) [6], [7], and to deal with the reassignment
of modes with fast oscillating phase [8], through the so-
called higher order synchrosqueezing transforms (FSSTNs).
The main problem associated with all these FSSTs is that they
are designed for specific types of modes and, if the latter depart
from this ideal situation, the reassignment process becomes
rapidly inaccurate. Note that another source of inaccuracy is
that the IF estimates used in FSSTs are very sensitive to noise.

Our goal in this paper is to find a way to choose locally in
the TF plane the best order for the synchrosqueezing transform
to represent the modes of a MCS. The proposed criterion is

based on the analysis of the energy on the ridges of FSSTs
of different orders. More precisely, we hypothesize that the
FSST leading the largest coefficient magnitudes on a ridge
is the most relevant to represent the associated mode. From
this criterion, we build a new adaptive FSST which proves to
outperform FSST with a fixed order for the reconstruction of
both simulated and real MCSs.

The layout of the paper is as follows: in Section II, we
introduce the notation we use throughout the paper as well
as the basics on FSSTs. Then, we introduce our new adaptive
FSST in Section III, and conclude the paper with different
simulations showing the relevance of the proposed approach.

II. DEFINITION AND NOTATION

In this section, we introduce a series of definitions and
notation used throughout the paper. Considering a signal f ∈
L1(R) ∩ L2(R) and a real window g ∈ L∞(R) ∩ L2(R), the
(modified) Short-Time Fourier Transform (STFT) is defined
as:

V gf (t, η) =

∫
R
f(τ)g(τ − t)e−2iπ(τ−t)ηdτ. (1)

STFT enables to perform the TF analysis of multicomponent
signals (MCS) containing P modes defined by:

f(t) =

P∑
p=1

fp(t), (2)

in which each mode fp(t) = Ap(t)e
2iπφp(t) where Ap(t) is

the instantaneous amplitude (IA) and φp(t) the instantaneous
phase (IP). We assume Ap > 0 and is varying slowly. For
such a signal, its ideal TFR (ITF) is given by

TI(t, η) =

P∑
p=1

Ap(t)δ(η − φ′p(t)). (3)

FSST aims at reassigning STFT through the following formula
[3]

T gf (t, η) =

∫
R
V gf (t, ξ)δ(η − ω̂f (t, ξ))dξ, (4)
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where ω̂f (t, ξ) is an IF estimate of the signal at point (t, ξ)
based on a local first order polynomial approximation of the
phase of the modes, and is computed through

ω̂f (t, ξ) = <

{
1

2iπ

∂tV
g
f (t, ξ)

V gf (t, ξ)

}
. (5)

Note that FSST can be extended to the discrete time and
frequency setting [9], through the definition of

T gf [n, k] ≈ T
g
f (
n

L
, k

L

M
), (6)

where L is length of the signal, M the number of frequency
bins and L

M the frequency resolution. Since FSST is based on
IF estimate ω̂f , its relevance is restricted to pure harmonics. To
cope with this issue, the second order [7], [10] and then higher
orders [8], [11] FSSTs were proposed. These were defined
by T g,Nf (t, η), obtained by replacing ω̂f in (4) by another IF
estimate ω̂

[N ]
f built assuming local phase polynomial oscil-

lations of order N [8]. Then provided g(0) 6= 0, f can be
approximated by

f(t) ≈ 1

g(0)

∫
R
T g,Nf (t, η)dη. (7)

Similarly to what was done for FSST, it is possible to define
T g,Nf [n, k] ≈ T g,Nf (nL , k

L
M ) and to reconstruct f at time n

L ,
using a sum instead of an integral.

In the case of a monocomponent signal and when N
matches the order of its phase, the magnitude of FSSTN
normalized by g(0) is the ITF. This, in practice, means that
all the information of the signal should be concentrated on
the FSSTN ridge corresponding to the global maximum of the
magnitude of FSSTN along the frequency axis at each time.
Therefore, to measure the quality of the reassignment process
associated with FSSTs the Earth mover’s distance (EMD) is
often used [12]. EMD is a sliced (fixed time) Wasserstein
distance aimed at comparing probability distributions, which
has already been used in the TF context for instance in [13],
[7]. However, since the true ITF is unknown one cannot use
EMD to determine the best order of FSST to represent a MCS.
Furthermore, for a MCS, this order depends both on time and
frequency since it has to adapt to the modes present at a given
TF point. In the following section, we are going to explain
how to make a relevant choice for N locally in the TF plane.

III. ADAPTIVE SYNCHROSQUEEZING TRANSFORM BASED
ON THE ENERGY ON THE RIDGES

In this section, we first investigate how the magnitude
of FSSTN on its ridges and normalized by g(0) are good
estimates of the IA of the modes of a MCS. Note that these
are exact estimates when the former fit into the model used
to design FSSTN. From now on, FSST1 denotes the original
FSST.

In that context, let ψpN be the pth ridge, namely corre-
sponding to the pth mode, computed as the local maxima
of the magnitude of T g,Nf [n, k] for each time index n when
k varies. To build the set of P ridges we use the classical

approach developed in [14], [15] and used in [7], [16] to
name a few. The normalized reassigned transform is defined,
for time index n, by 1

g(0) |T
g,N
f [n, ψpN [n]]| and is an estimate

of Ap(nL ). Note that, due to frequency resolution constraints,
STFT in the vicinity of a ridge associated with a mode may
not be reassigned with FFSTN in a single frequency bin even
if a mode fits perfectly into the model used to design FSSTN.
Indeed, the IF of a mode can cross several frequency bins
between two successive time indices. To circumvent such
a drawback, we introduce two other FSSTNs denoted by
T g,Nf,1/2 and T g,Nf,−1/2 corresponding to FSSTN but reassigned
in a set of frequency bins shifted by half a bin upward or
downward, respectively. Then we define the energy on the
ridge as follows:

EpN [n] =

max
q=−1/2,0,1/2

(
|T g,Nf,q [n, ψpN [n]]|

)
g(0)

,
(8)

in which T g,Nf,0 = T g,Nf . Doing so, we favor the representation
corresponding to the most concentrated energy, namely such
that the IF crosses only one frequency bin between two
successive time indices.
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Fig. 1. (a): magnitude of the STFT of a mode with an oscillating phase; (b):
EN for 2 ≤ N ≤ 4 for the signal whose STFT is depicted in (a)

Our goal is then to investigate the quality of this amplitude
estimate in the absence of noise. We first carry out simulations
on a pure harmonic mode with constant amplitude, for which
no significant differences arise between the estimates when N
varies. For a linear chirp, we then note that there are no visible
differences when N is larger or equal to 2, because for these
N FSSTN handles well this type of frequency modulation, but
as expected FSST1 behaves significantly worse. Now, if the
signal corresponds to the STFT mangitude of Fig. 1 (a), in
which A = 1 and the frequency is sinusoidal, the local linear
chirp model used in FSST2 is no longer accurate at location
where the frequency exhibits some curvature (around t = 0.5 s
in that case), and thus the amplitude estimate E2 is worse than
E3 or E4 which exhibit very small differences (p is omitted
because we consider a single mode). We also notice that, in the
absence of noise, EN is smaller than the mode amplitude when
the reassignment process does not work well. This behavior
is expected since, in that case, some part of the energy of the
mode is not reassigned onto the ridge. In practice, we numeri-
cally notice that EN , whatever N , is smaller than A, provided
there are no time interference. Indeed, these interference can
cause some overshoots in amplitude estimation with EN . To
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illustrate this, let us consider the mode with amplitude A = 1
and corresponding to STFT magnitude of Fig. 2 (a), for which
some time interference arise in the first half of the signal. For
this reason, the signal no longer fits into the ideal model for
N = 4, and this results in some overshoots in the estimate E4,
i.e E4[n] > A for some n (see Fig. 2 (d)). In the second part
of the signal, the time interference are far less important (the
sinusoidal frequency being multiplied by a dumping function),
limiting the overshoots. Now, if one considers E2 and E3,
depicted in Fig. 1 (b) and (c), the overshoot phenomenon
is less important, but the overall amplitude estimate is a lot
worse.
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Fig. 2. (a): STFT magnitude of a mode with dumped sinusoidal frequency
and amplitude A = 1; (b),(c),(d): E2,E3 and E4 for the mode corresponding
to (a), respectively.

We are now interested in assessing the overshoot phe-
nomenon when a mode is affected by a complex white
Gaussian noise ε such that f̃ = f + ε. Though EN is no
longer an exact estimate of the mode amplitude, it should still
give us a good indication of the quality of the underlying
reassignment process. We investigate whether the presence of
noise can cause some overshoots as time interference do. To
do so, we consider noisy versions of the modes corresponding
to STFT magnitudes of Fig. 1 (a) and 2 (a) (input SNR equals
10 dB, such an amount of noise ensures the ridge is always
detectable). The upper 95th percentiles of the random variables
(EN [n])n displayed in Fig. 3 (a) and (b) are always lower than
the true amplitude A of the mode, meaning that the noise
reassignment does not create any overshoots on the ridge. We
also note that at this noise level, matching the order of FSST
to the type of signal seems irrelevant, since FSST2 leads to
the most accurate estimate of the amplitude.

Based on the previous simulations we now explain how to
choose the order in FSSTN both locally and in an adaptive
way. To this end, we propose to consider the very simple
criterion which consists of selecting the order N for which
EpN is the maximum for the pth mode. Formally, considering
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Fig. 3. (a),(b): upper 95th percentiles of (EN [n])n, when 2 ≤ N ≤ 4 for
the signal of Fig. 1 (a) (resp Fig. 2 (a)). The number of noise realizations is
100.

the orders up to N0, this corresponds to

N p[n] = argmax
N∈1,··· ,N0

EpN [n]. (9)

With that formalism, at each time index n, the pth mode is
associated with a certain order which may vary with time.
Then, to confirm that the order given by N p at time index n
is relevant, we propose to reconstruct fp(nL ) by means of the
formula:

fp(
n

L
) ≈ RN

p

fp [n] :=
1

g(0)
T
g,Np[n]

f̃ ,q[n]
[n, ψNp[n][n]]. (10)

in which q[n] is either − 1
2 , 0 or 1

2 according to (8).

IV. RESULTS

Following formula (10), one defines the reconstruction of
fp from the coefficients on the ridge of FSSTN as:

fp(
n

L
) ≈ RNfp [n] :=

1

g(0)
T g,N
f̃

[n, ψN [n]]. (11)

To compare the quality of mode reconstruction with the
different techniques we introduce

SNR(Fp, E − Fp) = 20 log10

(
‖Fp‖2

‖E − Fp‖2

)
, (12)

with Fp[n] = fp(
n
L ), E being an estimate of Fp, and in which

‖.‖2 denotes the l2 norm.

A. Monocomponent Case

We first study the reconstruction of the monocomponent
signals of Fig. 1 (a) and 2 (a), and display the results in
Fig. 4 (a) and (b). At high SNR and comparing FSSTs with
fixed orders, we first notice that higher order FSSTs lead to
better reconstruction for both signals. Then when the noise
level increases, FSST2 behaves better than FSST3 and FSST4,
meaning it is not recommended to use high order polynomial
approximation of the phase of a mode even at a moderate
noise level. We also notice that the new technique we propose,
i.e. RNf , leads to a better reconstruction than the other tested
techniques, proving the relevance for mode reconstruction of
adapting locally the order of the synchrosqueezing transform
as defined in (9).
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Fig. 4. (a): output SNR corresponding to SNR(f,RN

f −f) for N = 2, · · · , 4
or to SNR(f,RN

f − f) for the signal of Fig. 1 (a); (b): same as (a) but for
the signal of Fig. 2 (a).

B. Multicomponent Case

To give an illustration for the MCS case, we study the signal
of Fig. 5 (a) which differs from the monocomponent case in
that the amplitudes of the modes are not constant. In that case,
we again notice that mode reconstruction is more accurate
when one uses the technique we propose rather than FSSTN
(see the reconstruction results for the two modes of Fig. 5 (a)
displayed in Fig. 5 (b)).
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Fig. 5. (a): modulus of the STFT of the sum of two modes with varying
amplitude; (b): mode reconstruction results as a function of input SNR.

C. Real Signals

We now investigate how the proposed adaptive technique
improves the quality of reconstruction on a bat echolocation
call whose STFT magnitude is depicted in Fig. 6 (a). In our
study, we only look for the three most energetic modes in

ridge detection and put RNa

f :=
3∑
p=1

RN
p

fp
, Na meaning we

consider an adaptive N in the MCS case. Similarly to RNa

f ,
we respectively denote signal reconstruction from the three
detected modes for, 1 ≤ N ≤ 4, by RNf . We then compare
RNa

f and RNf , for different N , to f in terms of SNR, and we
again notice that the first technique is much better than the
others (see the Table of Fig. 6 (b)).

V. CONCLUSION

In this paper, we have proposed a novel technique to
assess locally in the time-frequency plane the best order
in synchrosqueezing transforms to represent multicomponent
signals. Our approach to find this order is based on the analysis
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4 7.7444
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Fig. 6. (a): STFT modulus of a bat echolocation call; (b): SNR corresponding
to signal reconstruction from the coefficients on the ridges of the 3 most
energetic detected modes.

of the coefficient magnitude on the ridges of synchrosqueez-
ing transforms, and proves to be more relevant for mode
reconstruction than synchrosqueezing transforms based on a
fixed order. The main hypothesis used to design this new
adaptive method is that the magnitude of the normalized syn-
chrosqueezing transforms on their ridges estimate the modes
amplitudes while remaining lower. Though this appears to be
numerically true in most cases, a deeper mathematical analysis
is still needed to support this claim. This will be done in a
near future.
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