
Time-Varying Graph Learning Under Structured
Temporal Priors

Xiang Zhang
School of Information Science and Engineering

Southeast University
Nanjing, China

xiangzhang369@seu.edu.cn

Qiao Wang
School of Information Science and Engineering

Southeast University
Nanjing, China

qiaowang@seu.edu.cn

Abstract—This paper endeavors to learn time-varying graphs
by using structured temporal priors that assume underlying
relations between arbitrary two graphs in the graph sequence.
Different from many existing methods that only describe vari-
ations between two consecutive graphs, we propose a struc-
ture named temporal graph to characterize the underlying real
temporal relations. Under this framework, classic priors like
temporal homogeneity are actually special cases of our temporal
graph. To address computational issue, we further develop a
distributed algorithm based on Alternating Direction Method of
Multipliers (ADMM) to solve the induced optimization problem.
Numerical experiments on synthetic and real data demonstrate
the superiorities of our method.

Index Terms—ADMM, graph learning, structured temporal
prior, time-varying graphs

I. INTRODUCTION

Inferring the topology from data containing (hidden) struc-
ture, which is also called graph learning [1]–[4], has become
a hot research topic since that prior graphs are usually un-
available for graph-based models in many applications, e.g.,
graph neural networks [5]. In parallel with statistical models
[6], [7], graph signal processing (GSP) [8] plays a pivotal
role in graph learning, which attempts to learn graphs from
perspective of signal processing. One notable assumption that
GSP based models leverage is smoothness, under which signal
values of two connected vertices with large edge weights tend
to be similar [3]. On the other hand, a typical feature existing
in most models is that the environment is assumed to be static
such that one can learn merely a single graph from all observed
data. However, relationships between entities are usually time-
varying in real world. Therefore, learning a series of time-
varying graphs with timestamps is a more reasonable choice.

Current time-varying graph learning methods attempt to
jointly learn graphs of all time slots by exploiting prior
assumptions about evolutionary patterns of dynamic graphs
[9]. One may find that the most used assumptions here is
temporal homogeneity [10], under which only a small number
of edges are allowed to change between two consecutive
graphs. The essence of prior assumptions like temporal ho-
mogeneity is to establish temporal relations between graphs of
different time slots using prior knowledge, which are crucial
for learning time-varying graphs since they actually bring
structural information, in addition to data, to learning process.

Albeit interesting, assumption of temporal homogeneity
only cares about variations between graphs in neighboring time
slots and treats them equally. Obviously, this assumption is
simple enough but may be inconsistent with the real temporal
relations in some applications. Here we take crowd flow
networks of urban area as an example. The variations of crowd
flow networks at different time periods in a day are not uniform
due to the difference of travel behaviour [11]. For example,
the patterns in early morning (1 a.m.–5 a.m.) are apparently
different from those in rush hours (7 a.m.–9 a.m.). Thus, it
is not reasonable to treat all variations equally. Furthermore,
common knowledge tells us that networks in the same time
period of two different working days, e.g., 10 a.m. in Monday
and Tuesday, are also similar. Capturing this periodic pattern
is beyond the ability of the temporal homogeneity assumption.

To this end, a more general time-varying graph learning
method should be proposed by generalizing the assumption
of temporal homogeneity. In this paper, a flexible structure
named temporal graph is leveraged to describe structured
temporal relations of time-varying graphs. In temporal graph,
relations between graphs of any paired time slots, not limited
to adjacent time slots, can be established, and we use weights
to measure the ”closeness” of these relations. Therefore,
temporal homogeneity assumption [10] is a special case of
our framework. Furthermore, the algorithm for solving the
classic model [10] suffers from increasing complexity as
the number of time slots. To address computational issue, a
distributed algorithm based on Alternating Direction Method
of Multipliers (ADMM) is developed to solve the induced
optimization problem, which can save considerable time when
the number of time periods is large. Numerical tests illustrate
that our method outperforms the state-of-the-art methods in
face of intricate temporal structures.

II. PRELIMINARIES

We will learn undirected graphs G with non-negative
weights. Given N observed signals x1, . . . ,xN ∈ Rd gen-
erated from G, graph learning is aimed to infer the adjacency
matrix A ∈ Rd×d of G. Under smoothness priors, it is
equivalent to solving the following problem [2]

min
A∈A

∥A ◦R∥1 − α1⊤log(A1) +
β

2
∥A∥2F, (1)

2141ISBN: 978-1-6654-6798-8 EUSIPCO 2022

where ◦ is Hadamard product and 1 = [1, . . . , 1]⊤ ∈ Rd is
a column vector of ones. Parameters α and β are predefined
constants. Furthermore, A is the set defined as [2]

A =
{
A : A ∈ Rd×d+ ,A = A⊤,diag(A) = 0

}
, (2)

where R+ is the set of nonnegative real numbers and 0 ∈ Rd
is a column vector of zeros. For data matrix X ∈ Rd×N =
[x1, . . . ,xN] = [x̃1, . . . , x̃d]

⊤, the pairwise distance matrix
R ∈ Rd×d in (1) is defined as

R[ij] = ∥x̃i − x̃j∥22, (3)

where R[ij] is the (i, j) entry of R. The first term of (1) is
the smoothness of the observed signals over G. Besides, the
second and third term control the degree of each node and
sparsity of edges [2]. Note that A is a symmetric matrix with
diagonal entries equal to zero, and hence the number of free
variables of A is p ≜ d(d−1)

2 . We define a vector w ∈ Rp
whose entries are the upper right variables of A. Therefore,
problem (1) can be rewritten as [2]

min
w≥0

f(w) = min
w≥0

2r⊤w − α1⊤log(Sw) + β∥w∥22, (4)

where the linear operator S satisfies Sw = A1 and r is the
vector form of the upper right variables of R.

Under these notations, the time-varying graph learning
will learn a series of graphs w1, . . . ,wT using signals
X1,X2, ..XT collected during T time periods, where Xt ∈
Rd×N is the data matrix of time slot t. Specifically, temporal
homogeneity assumption based model is formulated as [10]

min
wt≥0

T∑
t=1

ft(wt) + η

T∑
t=2

∥wt −wt−1∥1

= min
wt≥0

T∑
t=1

2r⊤t wt − α1⊤log(Swt) + β∥wt∥22

+ η

T∑
t=2

∥wt −wt−1∥1 , (5)

where η is a global parameter controls the weight of temporal
priors and rt is calculated using Xt. The last term of (5)
indicates that only a small number of edges are allowed to
change between two consecutive graphs.

III. PROPOSED FRAMEWORK

Observe (5) and we can find that temporal homogeneity
prior only imposes constraints on variations of graphs between
two adjacent time slots equally, which is too simple and may
fail to characterize the temporal relations in real world. In this
paper, we suggest a general structure named temporal graph
to describe temporal relations of time-varying graphs. The
temporal graph GN is a graph structure whose nodes represent
graphs of T time slots and edges indicate the relationships
between the connected nodes, i.e, constraints on variations
between the corresponding graphs. As shown in Fig.1, tempo-
ral graph is undirected but with nonnegative weighted edges.
Any two nodes can be connected in temporal graph, e.g., γ1t
in Fig.1, instead of allowing merely two consecutive graphs
connection. Furthermore, we give up treating these temporal
constraints equally and use edge weights to measure the

Fig. 1: A prototype of temporal graph structure

“closeness” of them. Clearly, temporal graph is more general
and able to describe intricate temporal structures in real world.

Formally, we define a temporal graph GN = {VN , EN},
where VN is the node set containing graphs of all time slots
and EN is the edge set containing connections between these
graphs. In this paper, we suppose that there are T nodes and
s edges in GN , i.e., |VN | = T and |EN | = s. Time-varying
graph learning using temporal graph is then formulated as

min
wt≥0

∑
t∈VN

ft(wt) + η
∑

(i,j)∈EN

γij ∥wi −wj∥1 , (6)

where γij is the relative weight between the i-th and j-th time
slots. Parameter η is used to scale the weight of edge objectives
relative to node objectives. Note that, (6) will reduce to (5) if
we build GN as a chain structure with equal weights.

The design of GN is based on our prior knowledge of
temporal relations. We only need to care about the relative
closeness of two graphs i.e., γij , which is quantified by
experience or other auxiliary knowledge. Global weight η can
be determined by cross validation. The main contribution of
temporal graph GN is providing a more flexible structure to
describe temporal relations fusing our prior knowledge. In the
worst case, when we have no structured temporal priors, our
framework can still boil down to model (5) but provides a
more efficient algorithm introduced in the next section.

IV. ADMM BASED ALGORITHM

The algorithm in [10] for solving (5) attempts to learn
G1, ...,GT in a centralized fashion, resulting in increasing
complexity as T . We hence develop a novel distributed al-
gorithm based on ADMM framework [12]–[14] to solve (6).
The algorithm is able to learn graphs of different time slots
in parallel, showing its efficiency when T is large. For an
edge (i, j) ∈ EN , we first introduce a consensus variable
of wi, denoted as zij . In fact, zij represents the connection
starting from i to j. For the same edge, zji is the consensus
variable of wj . With consensus variables, (6) is equivalent to
the following problem

min
wt≥0

∑
t∈VN

ft(wt) + η
∑

(i,j)∈EN

γij ∥zij − zji∥1

s.t. wi = zij , for i = 1, ..., T and j ∈ M(i), (7)

where M(i) denotes the set of all the nodes that are connected
with node i in GN . We define a matrix W ∈ Rp×T ≜
[w1, ...,wT] containing all primal variables. In addition, ma-
trices of consensus variables Z ∈ Rp×2s and dual variables
U ∈ Rp×2s are also defined. For the n-th edge (i, j) in
temporal graph GN , n = 1, . . . , s, the corresponding consensus
variable vectors zij , zji are the (2n−1)-th and 2n-th columns

2142

of Z, respectively. This also holds true for matrix U. The
scaled form of augmented Lagrangian of (7) is obtained as

Lρ(W,Z,U)

=
∑
t∈VN

ft(wt) + η
∑

(i,j)∈EN

γij ∥zij − zji∥1

+
∑

(i,j)∈EN

(
ρ

2

(
∥uij∥22 + ∥uji∥22

)
+
ρ

2

(
∥wi − zij + uij∥22 + ∥wj − zji + uji∥22

))
, (8)

where ρ > 0 is an ADMM penalty parameter [14]. Following
ADMM framework, we alternately update W,U and Z.

1) Update W: For W = [w1, . . . ,wT], the update of(
wk+1
t , 1 ≤ t ≤ T

)
is as follows(

wk+1
t , 1 ≤ t ≤ T

)
=argmin

wt≥0

∑
t∈VN

ft(wt)

+
ρ

2

∑
(i,j)∈EN

(
∥wi − zkij + ukij∥22 + ∥wj − zkji + ukji∥22

)
.

(9)

Obviously, we can update each wk+1
t separately,

wk+1
t = argmin

wt≥0
ft(wt) +

ρ

2

∑
j∈M(t)

∥wt − zktj + uktj∥22. (10)

If we let θkt ≜ 1
m

∑
j∈M(t)

(
zktj − uktj

)
, where m = |M(t)|,

(10) can be reformulated as
wk+1
t =argmin

wt≥0
ft(wt) +

mρ

2
∥wt − θkt ∥22

≜ argmin
wt≥0

gt(wt). (11)

In this paper, we use projected gradient descent (PGD) algo-
rithm [16] to solve problem (11). The gradient of the objective
function of (11) is as follows
∇gt(wt) = 2rt + 2βwt +mρ(wt − θkt)− αS⊤ (Swt)

.(−1)
,

(12)
where .(−1) is an elementwise reciprocal operator. We set
y0 = wk

t and iteratively update yr using
yr+1 = (yr − ϵ∇gt(yr))+ , (13)

until it converges to y∗ with a certain precision, where (·)+ ≜
max(·, 0), r is the number of iterations of PGD algorithm and
ϵ the step size. After obtaining the solution y∗ of (11), we set
wk+1
t = y∗. Note that all wt can be updated in parallel.
2) Update Z: For each edge (i, j) ∈ EN , we can update the

corresponding column vectors zij , zji of Z as follows
zk+1
ij , zk+1

ji

=argmin
zij ,zji

ηγij ∥zij − zji∥1

+
ρ

2

(∥∥wk+1
i − zij + ukij

∥∥2
2
+
∥∥wk+1

j − zji + ukji
∥∥2
2

)
.

(14)
It is difficult to solve (14) due to that zij and zji are coupled
with each other in ∥zij − zji∥1. Inspired by the method
proposed in [17], we define a function ψ̃

ψ̃

([
zij
zji

])
= ∥zij − zji∥1 , (15)

Algorithm 1 ADMM based algorithm

Input:
α, β, η, ρ, the predefined GN , signals X1,..., XT

Output:
The learned graph w1, . . . ,wT

1: Initialize w0
t , z0ij and u0

ij for t ∈ VN , (i, j) ∈ EN , set
k = 0

2: while stop criterion not satisfied do
3: Update wk+1

1 , . . . ,wk+1
T using PGD in parallel

4: Update zk+1
ij , zk+1

ji for (i, j) ∈ EN using (18) in parallel
5: Update uk+1

ij ,uk+1
ji for (i, j) ∈ EN using (19) in parallel

6: k = k + 1
7: end while
8: return wk

1 , wk
2 , . . . ,wk

T

with which (14) can be solved by[
zk+1
ij

zk+1
ji

]
= prox ηγij

ρ ψ̃

([
ukij +wk+1

i

ukji +wk+1
j

])
, (16)

where prox ηγij
ρ ψ̃

(·) is the proximal operator of function ψ̃

[18]. However, we have no knowledge of the closed form
of the operator prox ηγij

ρ ψ̃
(·). Hence a property of proximal

operators mentioned in [17] might be introduced here.

Property 1. If a function h1(v) = h2(Gv+H), and GG⊤ =
1
λI, where I is an identity matrix, then

proxh1
(v)

=(I− λG⊤G)v + λG⊤(prox 1
λh2

(Gv +H)−H). (17)

In our problem, h1 = ψ̃, h2 = ℓ1 norm, G = [−I I], H is
zero matrix and λ = 1

2 . According to Property 1, the following
update can be easily reached for (16),[

zk+1
ij

zk+1
ji

]
=

1

2

[
ukij +wk+1

i + ukji +wk+1
j

ukij +wk+1
i + ukji +wk+1

j

]

+
1

2

−prox 2ηγij
ρ ∥·∥1

(
wk+1
j + ukji −wk+1

i − ukij
)

prox 2ηγji
ρ ∥·∥1

(
wk+1
j + ukji −wk+1

i − ukij
)  . (18)

Now each column of Z can be updated in parallel. Finally, we
can update u in parallel using

uk+1
ij = ukij +wk+1

i − zk+1
ij

uk+1
ji = ukji +wk+1

j − zk+1
ji . (19)

In summary, our algorithm can be implemented in a dis-
tributed fashion since the columns of W,Z and U can all
be updated in parallel. The global convergence is also guar-
anteed by ADMM framework since (6) is a convex problem.
Furthermore, the stopping criterion of ADMM framework can
be referred in [14].

V. NUMERICAL EXPERIMENTS

A. Synthetic Data

We first validate the strengths of our framework and al-
gorithm using synthetic data. The temporal structure we use

2143

Fig. 2: Non-chain structure

TABLE I: Running time (s) v.s. T : all results take the form
of logarithm (log10)

T 2 5 10 15 20 25 30 35

PDS 1.575 2.562 3.231 3.665 3.901 4.083 4.187 4.304
Ours 0.802 1.473 1.947 2.099 2.136 2.202 2.523 2.502

is shown in Fig.2. It is an unchained structure where G6

is connected with G1 instead of G5. To obtain time-varying
graphs, an initial RBF graph G1 with 20 vertices is gen-
erated in the same way as [3]. After that, G2 is obtained
by changing edges in G1 randomly and the number of the
changed edges is inverse proportion with the edge weights
of GN in Fig.2. Following this way, we can generate other
graphs sequentially. We emphasis that G6 is generated based
on G1 instead of G5. Smooth graph signals Xt of each Gt are
generated from Gaussian distribution N (0,L†

t), where Lt is
the Laplacian matrix of Gt and † is the pseudo inverse. See [3]
for more details. The adopted evaluation metrics are Matthews
correlation coefficient (MCC) [19] and relative error, each
averaged over all time. MCC is a metric representing the
accuracy of the estimated graph topology and its value is
between -1 and 1 (-1 represents completely wrong detection
while +1 means completely right detection). Relative error is
defined as ∥A∗ − Agt∥F/∥Agt∥F, where A∗ is the learned
adjacency matrix and Agt is the groundtruth. Three baselines
are leveraged, i.e., SGL (learn graphs of each time periods
independently), TVGL-Tikhonov [9] and TVGL-Homogeneity
[10]. The last two are time-varying models with a chained
temporal structure. Following the method of parameter selec-
tion in [2], we fix α = 2 and find the best β by grid search
[2]. Furthermore, we choose η that maximizes MCC, which
is 2.5. In ADMM framework, ρ is set to be 0.5 and tolerance
values are set to be 10−3 (both relative and absolute tolerance)
[14]. The parameters of baselines are all selected as the ones
corresponding to the best MCC values. The following results
are the average of 20 independent experiments. All algorithms
are implemented by python and run on an Intel(R) Xeon(R)
CPU with 2.10GHz clock speed and 256GB of RAM.

Figure 3 shows the performance of different data size N
of each time slots. We can observe that SGL reaches the
worst performance since no temporal priors are exploited. The
performance of TVGL-Tikhonov and TVGL-Homogeneity is
inferior to ours due to that their chain structure fails to
characterize the real temporal structure depicted in Fig.3. On
the contrary, our framework is able to describe the unchained
structure easily thanks to the strong representation ability of
temporal graph. Therefore, our method is superior to the other
baselines when faced with intricate temporal structures.

We also compare the efficiency of our algorithm with that of

(a) (b)

Fig. 3: Performance of the learned graph with different sample
size (a) MCC; (b) Relative error

Fig. 4: The designed temporal structure

centralized PDS algorithm in [10]. We fix d = 100 and apply
our method to chain temporal structure problems defined in
(5). This is feasible since chain structure is a special case of
our framework. We implement our algorithm in a distributed
way. Our code is run on different cores of a single machine,
and 25 cores are used. The results of two algorithms are
listed in Table I. We take logarithm (log10) on the results
for ease of presentation. We find that the running time of
PDS is significantly greater than ours especially when T is
large. The runtime of our algorithm increases slowly with T
thanks to the distributed feature. A great increase occurs in our
algorithm when T = 30, which is caused by that the number
of used cores is 25, and additional waiting time is required
when T > 25.

B. Real Data

Our framework is also applied to the Yellow Taxi Trip data
of New York city1 to learn the time-varying travel relationships
between different taxi zones. The data record timestamps and
locations of pickups of taxi orders. We focus on data from 0
a.m. to 12 a.m. and learn a graph for each hour, which means
that 12 time slots, as well as graphs, are finally obtained. The
city are divided into 27 zones and the number of taxi pickups
of each zones within 15 minutes are taken as signals for that
zone. A total of 80 graphs signals for each zone are collected,
i.e., Xt ∈ R27×80 for each t, since we only select data of 20
workdays in September of 2018.

We then design a temporal structure GN , which is shown
in Fig.4, based on our prior knowledge of the variations of
crowd flow networks. Note that temporal structure in Fig.4 is
not a chain structure since the variations of crowd flow patterns
at different time duration in one day are not uniform due to
the diversity of travel behaviour. In the early morning, most
people are in sleep and the crowd mobility patterns may stay
static. Therefore, we connect graphs in early morning with
each other, i.e., from G2 to G5, even they are not adjacent in
time. Additionally, it is common sense that crowd mobility

1The data is available at https://data.cityofnewyork.us/Transportation/2018-
Yellow-Taxi-Trip-Data.

2144

(a) G3: 2 a.m.-3 a.m. (b) G5: 4 a.m.-5a.m. (c) G9: 8 a.m.-9 a.m.

(d) G3: 2 a.m.-3 a.m. (e) G5: 4 a.m.-5 a.m. (f) G9: 8 a.m.-9 a.m.

Fig. 5: The learned graphs of taxi zones of New York. The upper row (a-c) shows results of our model and the lower row
(d-e) shows the results of TV-Homogeneity model.

patterns change significantly in rush hours. Hence we set the
smallest weight between G7 and G8.

We observe from Fig.5 that G3 and G5 learned by our
method are similar despite they are not in consecutive time
slots. It makes sense since the travel patterns in early morning
should almost stay unchanged. However, temporal homogene-
ity assumption fails to capture this temporal characteristic.
Compared with graphs of G3 and G5, G9 learned by our method
shows the following changes. 1) Connections between residen-
tial zones are strengthened. This is caused by the fact that most
people travel to work from home in rush hours. Therefore,
the travel patterns of these zones are similar. 2) Connections
between zones in Manhattan area are also strengthened due to
the fact that more people take taxi to work area in Manhattan.
However, these changes of TV-Homogeneity are less obvious
than ours since it treats all variations equally.

VI. CONCLUSION

In this paper, we propose a general time-varying graph
learning framework, under which temporal graph is employed
to describe temporal structures. A distributed algorithm using
ADMM framework is developed to solve the induced opti-
mization problem. Experimental results show that our frame-
work outperforms the state-of-the-art methods when facing
complicated temporal structures.

REFERENCES

[1] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp.16–43, 2019.

[2] V. Kalofolias, “How to learn a graph from smooth signals,” in Artif.
Intel. and Stat. (AISTATS), 2016, pp. 920–929.

[3] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, 2016.

[4] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Process.
Mag., vol. 36, no. 3, pp. 44–63, 2019.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw Learn Syst., vol.32, no. 1, pp. 4–24, 2020.

[6] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp.
432–441, 2008.

[7] M. Yuan and Y. Lin, “Model selection and estimation in the gaussian
graphical model,” Biometrika, vol. 94,no. 1, pp. 19–35, 2007.

[8] A. Ortega, P. Frossard, and J. Kovačević, J. Moura and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[9] V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time
varying graphs,” in IEEE Intl. Conf. Acoust., Speech and Signal Process.
(ICASSP), 2017, pp. 2826–2830.

[10] K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learn-
ing with constraints on graph temporal variation,” arXiv preprint
arXiv:2001.03346 [eess.SP], 2020.

[11] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat
diffusion graphs,” IEEE Trans. Signal Inf. Proc. Netw., vol. 3, no. 3,
pp. 484–499, 2017.

[12] J. Nocedal and S. Wright, Numerical optimization, Springer Science &
Business Media, 2006.

[13] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge univer-
sity press, 2004.

[14] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers, Now
Publishers Inc, 2011.

[15] N. Komodakis and J. Pesquet, “Playing with duality: An overview
of recent primal dual approaches for solving large-scale optimization
problems,” IEEE Signal Process. Mag., vol. 32, no.6, pp. 31–54, 2015.

[16] P. Calamai and J. More “Projected gradient methods for linearly con-
strained problems,” Math Program., vol. 39, no. 1, pp. 93–116, 1987.

[17] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via
the time-varying Graphical Lasso,” in Proc. of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2017, pp. 205–213.

[18] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in optimization, vol. 1, no. 3, p. 127–239, 2014.

[19] D. Powers, “Evaluation: from precision, recalland f-measure to
roc, informedness, markedness andcorrelation,” arXiv preprint
arXiv:2010.16061, 2020.

2145

