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Abstract—In machine learning applications, the data are often
high-dimensional and intrinsically related. It is often of interest
finding the underlying structure and the causal relationships of
the data and representing the findings with directed graphs. In
this paper, we study multivariate time series, where each series
is associated with a node of a graph, and where the objective
is estimating the topology of the graph that reflects how the
nodes of the graph affect each other, if at all. We propose a
novel Bayesian method which allows for nonlinear and multiple
lag relationships among the time series. The method is based
on Gaussian processes, and it treats the entries of the adjacency
matrix as hyperparameters. The method employs an automatic
relevance determination (ARD) kernel and allows for learning of
the mapping function from selected past data to current data.
The resulting adjacency matrix provides the intrinsic structure
and answers questions related to causality. Numerical tests show
that the proposed method has comparable or better performance
than state-of-the-art methods.

Index Terms—topology inference, Gaussian processes, causal-
ity, ARD kernel

I. INTRODUCTION

In many science and engineering problems, it is important
to determine the underlying structure of observed data/signals
because structures provide important insights about the system
where the data come from. Given the significance of the
problem, it is not surprising that learning the underlying
structure of multidimensional data has been well studied in
many fields, including biology [13], social sciences [19],
and finance [10]. Examples include searching the functional
connectivity within different areas in the brain, analysing
relationships between individuals on social platforms and even
entire societies, and studying interdependence of financial
entities [20].

To find out the topology of a graph, a common method is to
estimate the Laplacian matrix or the adjacency matrix of the
graph. The work in [6] and [7] is about learning the structure
of the data using the Laplacian matrix and with probabilistic
interpretation of estimating a Gaussian Markov Random Field
model. We observe that the use of the Laplacian entails that
the estimated graph has a symmetric adjacency matrix, i.e., it
is an undirected graph. While this approach may favor a low
estimation workload, it is limited when it comes to dealing
with directed single-way dependencies on the data, or when
the generative model is nonlinear, as assumed in this paper. In
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[16], [17], the adjacency matrix can be seen as a graph filter,
and in [1], [14] the inferred network topology is based on a
structural equation model (SEM). The authors of [23], [25]
proposed a kernel-based vector autoregressive (VAR) model
to capture the nonlinearity and the dynamics of a graph. At
the same time, the adjacency matrix can also be viewed as
related to Granger causality [4], motivating the interpretation
of the network of structural data-dependencies as an evidence
of a causal relationships.

In this paper, we propose a novel Bayesian method to infer
the directed adjacency matrix of a graph from time-series
data observed at the nodes of the graph. At the same time,
the objective is to estimate the causalities that exist in the
network. We assume nonlinear functional relationships among
the signals on the graph, where the functions, too, need to
be estimated. Specifically, we propose to employ Gaussian
processes (GPs) as a tool for learning the unknown mappings.
The arguments of these functions are not only past local data
but also past data from other nodes. The GPs are based on
a predefined kernel, where the hyperparameters of the kernel
encode the relevance determination of the arguments and thus,
allow for automatic relevance determination (ARD). In this
way, we can readily obtain the topology of the graph. Our
method enables learning the strength of influence from all
the selected previous data simultaneously, which means that
the method is not dependent on the knowledge of specific
time delays. We use GPs because they are data-efficient
and flexible, and they can be viewed as a general tool for
estimating nonlinear functions.

The ARD kernel has been successfully used in machine
learning since it was first formulated in the framework of
neural networks [3]. For example, [9] and [24] used ARD
kernels to do feature selection for an SVM. Aside from
feature selection, [8] proposed a method to infer the causality
of two time series using the hyperparameter of Gaussian
processes, whose kernel is an ARD kernel. Further, the idea
of making inference based on the hyperparameters of GPs
has been successfully applied in many ways. For instance,
[22] introduced an online method for detecting change points,
while [15] proposed a time-varying hyperparameter model to
estimate time-varying functions.

The rest of the paper is organized as follows: In Section
II, we give a brief overview of graphs, GPs and the ARD
kernel. Then in Sections III and IV, we describe our model.
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In Sections V and VI, we present numerical tests on different
cases and provide concluding remarks, respectively.

II. BACKGROUND

A. Graph and Graph Signal

Consider a graph denoted by G(V, E ,A) where V is a set of
N nodes, E is a set of edges, and A is the graph’s adjacency
matrix. One way to describe the topology of a graph G is
through A, which can be symmetric or asymmetric and thus,
implying if the graph is undirected or directed, respectively.
The (n,m)th entry of A is anm ∈ {0, 1}. For an undirected
graph, anm = amn, and if its value is equal to one, there is
an edge between node m and node n. Similarly, for a directed
graph, if anm is equal to one, there is an edge pointing from
node m to node n. Similarly, with a weighted adjacency matrix
W with positive entries wn,m ∈ R, we can represent the
strength of coupling of the nth and mth nodes.

On a given graph, its signals are defined as follows.
Consider an unordered set of data S = {sα0

, ..., sαN
},

which are associated with G. We assume each data in S are
assigned to a single specific node in G. Then the data S
are ordered by the nodes in G and are given by an N -tuple
s = {s1, ...sn, ..., sN}. We can think of s as a graph signal
over G [5]. The nth element sn in s is indexed by the node n
of G.

B. Gaussian Processes

Gaussian processes are a class of stochastic processes,
which are used in machine learning for modeling functions
[21]. More specifically, let (xn, yn), n = 1, 2, . . . , N , be N
input-output values, y = [y1 y2 . . . yN ]⊤, and y = f(X),
with f ∈ RN×1 and X ∈ RN×dx being a matrix whose rows
represent the inputs to the function f , that is,

X =


x⊤
1

x⊤
2
...

x⊤
N

 , y = f(X) =


f(x1)
f(x2)

...
f(xN )

 . (1)

The idea behind GPs is to assume that the function’s
samples are jointly drawn from a Gaussian distribution
instead of being deterministic. Mathematically, we have f ∼
GP (m(X),Kθ(X)), where m(X) is the mean function,
Kθ(X) is the covariance (kernel) function of the process, and
θ is the vector of hyperparameters of the GP i.e.,

m(X) = E[f(X)],

[Kθ(X)]ij = E[(f(xi)−m(xi))(f(xj)−m(xj))]. (2)

In practice, without loss of generality, we let the mean function
to be 0, and by definition, the kernel must be positive definite
[21].

C. Automatic Relevance Determination Kernel

A commonly used kernel for GPs is the squared exponential
(SE) kernel with the following form:

kl(xi,xj) = exp

(
− (xi − xj)

⊤(xi − xj)

2l

)
, (3)

where l is a hyperparameter of the GP, also called
a characteristic length−scale. The symbol l reflects the
relationship between the distance one moves in the input space
and how the function value changes in the output space [21].
Informally, if l is very small, the output is very sensitive to
the change of the input, but if l is very large, small changes
of the input do not affect the output much.

The ARD kernel is an extension of the SE kernel with the
following form:

kARD(x,x′) = exp

(
−

dx∑
i=1

(xi − x′
i)

2

2li

)
, (4)

where xi is the ith entry of x. Different from the SE kernel,
for each component of the input vector, the ARD kernel
assigns a different length−scale. If we think the input x is
a vector of features, we can use the length−scale in deciding
which features to discard from the input (the ones with small
contributions or no contributions) and which not. In the sequel,
we exploit the ARD kernel to infer (causal) relationships
among the observed data.

III. MODEL DESCRIPTION

(a) Illustration of the model,
where the arrows’ directions
suggest directions of influ-
ence. Different colors repre-
sent different time lags.

(b) Illustration of the dimension of
the adjacency matrix A, where each
layer represents the adjacency ma-
trix for a specific lag.

Fig. 1. Model Description

Assume y(t) ∈ RN is a column vector composed of
measurements at time t on G with N nodes, whereas yn(t)
denotes the graph signal of node n at t. Further, we assume
that yn(t) is a function of the previous data on all (or some
of) the nodes of G. Specifically, we consider the data model

y(t) = [f1(Y
P (t)), . . . , fN (YP (t))]⊤ + v(t), (5)

where YP (t) := [y(t−P )⊤, . . . ,y(t−p)⊤, . . . ,y(t−1)⊤] ∈
R1×NP , with P being the discrete delay time span and
y(t − p), the graph signals at time t − p. The model noise
is v(t) ∼ N (0, σ2

vI), and fn is the GP function of node n,
as also visualized in Fig. 1(a). We also assume independent
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modeling of past dependencies of the GP at each node, and
thus, for the nth element of y(t) in (5), we write

yn(t) = fn(Y
P (t)) + v(t). (6)

For the signal at the nth node, we have

ỹn = fn(X) + v, (7)

where ỹn := [yn(P + 1), . . . , yn(T )]
⊤ ∈ R(T−P )×1, X :=

[YP (P +1)⊤, . . . ,YP (T )⊤]⊤, where X ∈ R(T−P )×NP , and
the function fn : X → ỹn is drawn from a GP, i.e., fn ∼
GP(0,Kn), where Kn ∈ RT−P×T−P is the kernel function
of the GP and has the following form:

Kn = σ2
n

 kn1,1 kn1,2 . . . kn1,T−P
...

knT−P,1 knT−P,2 . . . knT−P,T−P

 , (8)

where σ2
n is a hyperparameter, and kni,j is defined by

kni,j = exp

(
−

P∑
p=1

N∑
m=1

(ym(i+ p− 1)− ym(j + p− 1))2

2lpnm

)
.

(9)

with the lpnm also being a hyperparameter.

IV. PROPOSED SOLUTION

In inferring the topology of the directed graph, we propose
to use the kernel defined in (9). With (9), as anticipated by
(7), we model the inputs of a specific node n by the past P
values of the graph signals coming from all the graph nodes,
including n itself.

If lpnm is small, a small change on the past history of
node m will cause a large change to node n, for a specific
delay index p, and vice-versa for large lpnm. Then, the set
θn := {lpnm}p=1,...,P

m=1,...,N of hyperparameters can indicate which
nodes contribute to the evolution of the networked signals, and
which are not involved, i.e., which edges exist in the network
and which do not. An easy way to think about the model is
seeing each delay as a different layer of an adjacency matrix
organized as a tensor, as shown in Fig. 1(b).

Equation (7) is our model, and based on the assumptions
of the model, for the marginal likelihood of θn (marginalized
over the function fn), we can write

p(ỹn|X,θn) =

∫
p(ỹn|fn,X,θn)p(fn|X,θn)dfn. (10)

In practice, to train a GP model, the common method
is to maximize the marginal likelihood in (10) instead
of the posterior probability, since the integration∫
p(ỹn|X,θn)p(θn)dθn is usually intractable.
Thus, to learn the optimal set of hyperparameters θ∗

n,
we maximize (10) using a gradient based approach on the
marginal log-likelihood [21], which is expressed by

log p(ỹn|X,θn) = −1

2
ỹ⊤
nK

−1ỹn − 1

2
log |K|

− T − P

2
log 2π, (11)

where K = Kn + σ2
vI. The partial derivative of the marginal

loglikelihood can be written as [21]

∂

∂θ(i)
log p(ỹn|X,θn) =

1

2
ỹ⊤
nK

−1 ∂K

∂θ(i)
K−1ỹn

− 1

2
tr(K−1 ∂K

∂θ(i)
) =

1

2
tr
(
(αα⊤ −K−1)

∂K

∂θ(i)

)
, (12)

where α = K−1ỹn and θ(i) is the ith element of θn. Thus,
after we get the optimal set {lpnm}∗ from the minimization
of (10), we use a threshold ϵ to determine the effective
network, i.e., the nonweighted adjacency matrix, according to
the following criterion:

apnm =


0, if 1

lpnm
< ϵ

1, otherwise
, (13)

and wp
nm = 1

lpnm
are the entries of the weighted and

not-thresholded adjacency matrix W.

V. NUMERICAL RESULTS

We analyzed the performance of the proposed method
on three non-linear dynamic systems. Each system evolved
according to specific relationships among the signals
associated with the nodes of a network, and we compared the
ability of our method to unveil the true network topology with
that of other approaches. We note that our proposed method
does not make any use of the generative signal and system
model. The first example is a small dynamical system [18],
whereas the second is a large one, i.e., a Lorenz 96 model
[11]. Finally, the third example illustrates the applicability of
the proposed method on a multiple delay test, detecting edges
of a multi-layer causal model.

A. A Discretized Lorenz Attractor

We considered the three-node network with one-lag memory
associated with the discretized version of the Lorenz attractor
[2], [12], described by xt+1

yt+1

zt+1

 =

 xt

yt

zt

+ 0.01

 10(yt − xt)
xt(28− zt)− yt

xtyt − 8
3z

t

 , t ≥ 0.

(14)

Learning this network has been previously addressed in [18]
by a kernel-based algorithm, specifically proposed to deal with
the non-linear generative model of the data.

We point out that for benchmarking performance, the
weighted adjacency matrix W is more informative than the
binary connectivity matrix A and the associated heatmap.
Thus, in Fig.2(b) we plotted the values of all the entries
log(wp

nm) = − log(lpnm), for different lengths of the time
series (starting with a series that is 10 samples long and
increasing their sizes to 250 samples in steps of 10 samples).
The black star marks in the figure are the entries that
correspond to existing edges of the graph representing the
model in (14), with the red plus mark being the only one
that quantifies a missing edge. Figure 2(b), clearly shows that
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the non-causal entry is well separated from the other ones.
Figure 2(c) displays the evolution of the edge identification
error rate EIER = |A−Â|0

N(N−1) as a function of the number of
samples, T , which has also been used in [18]. We set P = 1 in
our model, i.e., exploiting knowledge of the one-lag coupling
of the system, as in [18]. We point out that in our simulations
we used the same initial conditions as in [18]. The method
from [18] was capable to effectively detect all the edges after
200 samples, and ours, as seen from Fig. 2 after only 90
samples. With other initializations, our method had similar
performance as the one presented in Fig. 2.

(a) (b)

(c)

Fig. 2. Discretized Lorenz Attractor. (a) The true adjacency matrix. (b)
log(1/lmn) for all the entries of the adjacency matrix W with different
number of samples, where m,n = 1, 2, 3. The red marks denote the entry
(1, 3), which corresponds to a non-existing edge, and the black marks to the
remaining entries. The values of (1, 3) for time series with lengths 110, 140,
230 samples are not plotted because their values are much smaller than −20.
(c) The edge identification error rate with different number of samples when
the logarithm of the threshold in equation (13) is equal to −8.

B. Lorenz 96 Model

The Lorenz 96 model is defined as

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, . . . , N. (15)

We generated the synthetic data shown in Fig. 3(a) by a
numerical integration with a step size of 0.015, initializing all
the nodes x(0) = F = 8 and then adding a 0.01 perturbation
to node 1. The lags in this case refer to the samples instead
of time. We conducted a comparison with LASSO applied on
a VAR model, and we measured the performance with the
F-score, defined by

F-score =
TP

TP + 1
2 (FN + FP)

, (16)

where TP stands for the number of true positives, FP for the
false positives, and FN for the false negatives. The results
are plotted in Fig. 3(b), which shows that the GPs can detect
most of the true edges with fewer errors with respect to the
VAR-LASSO, as pictorially highlighted also in Fig. 3(c).

(a) Illustration of a 30 dimensional Lorenz 96. The x axis is the
index of the nodes, the y axis represents time, and the z axis is the
value of the samples.

(b) Comparison of the F-scores obtained by the GPs and the LASSO
method.

(c) Heatmap of the ground truth (presence/absence of edges), and heatmaps
of the GP and the LASSO method with 400 samples. The yellow color
corresponds to the presence of an edge.

Fig. 3. Lorenz 96.

C. Multiple Delay

In the third experiment, we designed a small network to
test the detection capabilities of the proposed approach in a
multiple-delay problem. Each node interacted within the small
network but with a different delay time. The data model is
shown in Fig. 4(a), which graphically represents the dynamical
system described by the following set of equations:

y(t) =x(t− 3)2 + x(t− 3),

z(t) = sin(x(t− 3)) + 1,

q(t) =x(t− 2)z(t− 2) + x(t− 2)y(t− 2)

+ z(t− 2)y(t− 2)− 3,

x(t) = sin(q(t− 1))/q(t− 1). (17)
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The initial values of x, y, z, q were drawn as i.i.d. samples
from a Gaussian distribution, N (0, 0.52). Based on the above
equation, we needed three adjacency matrices to represent the
network topology, and they are plotted separately in Fig. 4(b).
Figure 4(c) depicts the true adjacency matrix. The results
clearly show that our GP-based method can identify the
multiple delays by using 110 samples (or more).

(a)

(b) Value of log(1/l). (c) A

Fig. 4. An example with multiple delays. (a) Data model description: the
arrow directions reflect direction of causation. The different colors represent
different delays, p = 3 (blue), p = 2 (red), and p = 1 (green). (b) The plots
show all the elements of the estimated adjacency matrix; the entries which
correspond to existing/non-existing edges are marked differently. (c) The true
adjacency matrix for each layer. The top plots in (b) and (c) correspond to
p = 3, the middle to p = 2 and the bottom to p = 1, respectively.

VI. CONCLUSION

In this paper, we proposed a GP-based method for
estimation the topology of a graph from observed signals on
the graph. The assumptions of the used model are mild, and
the method can detect causation among the signals on the
graph. We showed that its performance can be very good
under different conditions, including non-linear dynamics,
large systems, and even scenarios with multiple delays. Future
directions of work include the following:

1) Principled ways of selecting thresholds for edge
detection,

2) Extension of the proposed method to dynamic networks
where the topology of the network varies with time,

3) Scalability of the method. Note that when the system
delay P and the network size N increase, the number
of parameters that need to be estimated is N2P . If N
and P are large, this becomes problematic.
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