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Abstract—Linear fusion of estimates has been studied from the
perspectives of known and unknown correlations of estimation
errors. Whereas optimal linear combinations can be designed
in the former case, a robust approach is usually chosen in
the latter one. The loss of performance may be unacceptably
high, which raises the need to find a middle ground. This paper
reviews various approaches to information fusion, formulates the
problem of random correlation and presents the solution. Monte
Carlo verification of the results is discussed and an illustration
is provided.

Index Terms—stochastic systems, linear estimation, informa-
tion fusion, unknown correlation, random correlation

I. INTRODUCTION

The probabilistic calculus can be used in many ways.
Interpretation of probability [1]–[3] is not enforced by the
nature, but it is a choice of the user. Nevertheless, once an
interpretation is chosen, the framework has to be kept to.
The authors of this paper distinguish the following elementary
approaches to fusion inference under different interpretations.

The information geometry [4], [5] introduces differential
geometry structures. The inference is based on choosing a pa-
rameter value from a statistical manifold. Various divergences
can be proposed in order to define information fusion. The
inferred point representing a probability distribution can lie
between the points/distributions to be fused [6] or not far
from those [7] for example. Fusion rules [8] have often the
form of averages like the arithmetic or geometric means of
densities [9], which are also called as linear and logarithmic
opinion pools [10]. To sum up, the geometric approach is used
to model the knowledge and its processing. It is therefore
questionable, whether any properties can be attributed not
only to the inference process, but to the results of the infer-
ence themselves. This approach may be called as subjective
Bayesian, since it does not assume any objective ground truth.

Other approaches are based on the assumption of existence
of a system. An abstract system, i.e. a model, is defined first
for a real system. It is the user of the probability theory who
is responsible for the correctness of the model; the profit is
that properties can be attributed to the results of the inference.
Once the measurement process is described, the observed data
can be used.

This work was supported by the Czech Science Foundation, project
no. P103/20-06054J.

If the quantity of the interest is considered to be stochastic,
its distribution conditioned on the data can be searched. This
approach may be called objective Bayesian, since it tries to
find an objective information. Various approximations may be
unavoidable due to computational complexity, nevertheless, it
is not possible to depart from the philosophical framework, as
it has been shown in [11].

The classical estimation deals with designing functions of
data. The quality of these functions is evaluated after an
experiment is specified, but before the data are observed. A
typical criterion is the mean square error, which is to be
minimised. For set-valued functions of data, the goal may be to
achieve a confidence level, i.e. the probability that the random
set contains the quantity of the interest [12]–[14]. Among the
sets with the same confidence levels, the sets with small size
are preferred.

The possibility to design the optimal solution is limited
by the availability of the system description, which is not
assumed in decentralised estimation. Local data can be pro-
cessed locally, without knowing the whole system. Linear
fusion under unknown correlation is considered in [15]–[17]
for example. The estimates are constructed in a robust sense
and they are accompanied with a self-assessment matrix. If
the device that provides the estimate is correctly designed, the
provided matrix is greater than or equal to the unknown mean
square error matrix. The optimality in the robust sense has
been shown in [18], observations useful for the construction
of confidence sets have been presented in [19].

The fusion under unknown correlation can be improved
by supplying a partial knowledge. Various sets of admissible
correlation are discussed in [20]–[22] for example. There, the
sets are smaller than the sets stemming from the condition of
positive semi-definiteness of mean square error matrices. The
idea of considering random correlation has appeared in [23]
or [24] for example, nevertheless, incompatible philosophical
frameworks have been tangled there.

The goal of the paper is to provide a proper formulation
of the problem of fusion under random correlation and to
find its solution. Section II formulates the problem. Notes on
the existing approaches are given in Section III. The analysis
of the problem and its solution are provided in Section IV,
illustrations can be found in Section V. Section VI summarises
the paper.

2176ISBN: 978-1-6654-6798-8 EUSIPCO 2022



II. PROBLEM FORMULATION

It is assumed that a stochastic system exists and that its
description is known. Let x denote its state (i.e. the quantity
to be estimated) and let the state lie within a known set X .
If the state is stochastic, let its probability density function
p(x) be known.1 Denote the measured data by z and let the
probability density p(z|x) be known for each admissible value
of x.

The mean-square-error-based estimation constructs func-
tions x̂(z) of the random measurement z. The resulting
random value x̂ will be referred to as the estimate. The
estimation error x̃ defined as x̃ = x − x̂ is random as well.
The mean square error matrix Σ is given by Σ = E{x̃x̃T };
it is a constant by definition and it does not depend on the
realisation of z. If it holds E{x̃} = 0, the estimator x̂(z) (or
the random estimate x̂) is said to be unbiased and the mean
square error matrix Σ is equal to the covariance matrix of the
error x̃; note that unbiasedness is not related to a particular
realisation of z.

The confidence sets X are random subsets of the set X
that are obtained by a mapping of z. The confidence level `,
0 ≤ ` ≤ 1, is a number with the property P (x ∈ X) ≥ ` and
its typical choices are close to 1.

The formulation of the fusion problem follows by adding
more assumptions. Section II-A proceeds with the linear
fusion and the problem of random correlation is introduced
in Section II-B.

A. Linear Fusion

Let the measurement z consist of two parts z1 and z2 that
are used to produce estimates x̂i, i = 1, 2, with the errors x̃i
and mean square error matrices Σi, respectively. The cross-
correlation matrix Σ1,2 of the estimation errors is given by
Σ1,2 = E{x̃1x̃

T
2 }. The fused estimate x̂ is constructed by a

linear combination of these estimates

x̂ = W1x̂1 +W2x̂2, (1)

where W1, W2 are matrix weights constrained by a regularity
condition W1 + W2 = I with I denoting the identity matrix.
If both individual estimates x̂i are unbiased, the condition
guarantees the fused estimate x̂ to be unbiased as well. Due to
the condition, the mean square error matrix Σ can be expressed
as Σ = W1Σ1W

T
1 +W1Σ1,2W

T
2 +W2ΣT1,2W

T
1 +W2Σ2W

T
2 .

That is, it is parametrised neither by the unknown value of x
in the case of deterministic state nor by the distribution of x
in the case of stochastic state.

For presentation simplicity, the following joint vectors and
matrices are introduced,

x̂J =

[
x̂1

x̂2

]
, x̃J =

[
x̃1

x̃2

]
, J =

[
I
I

]
,

WJ =
[
W1 W2

]
, ΣJ =

[
Σ1 Σ1,2

ΣT1,2 Σ2

]
. (2)

1The distinction of deterministic/stochastic state is used in the discussion
of various approaches, but it is irrelevant in the problem formulation.

Thus, the fused estimate and its mean square error matrix can
be expressed as x̂ = WJ x̂J and Σ = WJΣJW

T
J . The fusion

optimal in the mean square error sense designs the weights as
WJ = (JTΣ−1

J J)−1JTΣ−1
J and the corresponding matrix is

then given by Σ = (JTΣ−1
J J)−1.

For the construction of confidence sets, certain probability
density functions have to be specified. Therefore, it is assumed
that the estimates are unbiased and that the estimation errors
are jointly Gaussian,

x̃J ∼ N ([0, 0]T ,ΣJ). (3)

The linear fusion (1) then provides an estimate with a Gaussian
distributed error, x̃ ∼ N (0,Σ). The standard confidence
sets X with confidence level ` are constructed as ellipsoids
ε(x̂,Σ, q) with random centre x̂, shape matrix Σ and size
parameter q as

ε(x̂,Σ, q) = {s|(s− x̂)TΣ−1(s− x̂) ≤ q}, (4)

where the parameter q is given by the ` quantile of the chi-
square distribution with the degrees of freedom corresponding
to the dimension of the state x. This construction is valid even
for suboptimal fusion weights Wi and it does not require the
state x to be stochastic.

B. Problem of Random Correlation
Whereas the distribution of the joint estimation error x̃J is

known in the standard case, this paper considers existence of
a random nuisance parameter ρ. It is assumed that the density
p(x̃1, x̃2|ρ) is available and that the density p(ρ) has been
specified. Moreover, independence of the local errors x̃i of
the nuisance parameter ρ is assumed,

p(x̃i|ρ) = p(x̃i). (5)

That is, the local estimates x̂i and confidence ellipsoids
ε(x̂i,Σi, q) can be constructed locally, but the fusion is
affected by the nuisance parameter ρ. The parameter de-
scribes the dependence structure. For example, if the density
p(x̃1, x̃2|ρ) is jointly Gaussian for each ρ and fulfils the
condition (5), the nuisance parameter can be given by the
cross-correlation matrix Σ1,2.

The elementary property of mean square error matrices ΣJ
of being positive semi-definite enables the matrix Σ1,2 to be
parametrised by a matrix Ω (which plays the role of ρ) as

Σ1,2(Ω) = Σ
1
2
1 ΩΣ

T
2
2 , Σi = Σ

1
2
i Σ

T
2
i , I − ΩΩT ≥ 0, (6)

where the inequality means that the left hand side term is a
positive semi-definite matrix. It is therefore possible to specify
the density p(Ω) with a standardised support instead of the
density p(Σ1,2) with the support dependent on Σ1 and Σ2.
For more details, see e.g. [25]–[27].

The fusion problem under random correlation is thus defined
as the problem of designing the fusion weights Wi, finding
the mean square error matrix Σ corresponding to the fused
estimate and constructing a confidence set X with a prescribed
confidence level `. Availability of the density p(ρ) and a
Gaussian density p(x̃1, x̃2|ρ) is assumed here, together with
the validity of (5).

2177



III. NOTES ON EXISTING APPROACHES

In order to highlight the philosophical background, connec-
tion to and differences from other approaches are discussed
next. Unknown correlation can be found in Section III-A,
Bayesian estimation is commented in Section III-B.

A. Unknown Correlation

If the matrix parameter Ω is limited only by the regularity
condition (6) and no distribution of Ω is considered, the robust
approach is used. The unknown joint mean square error matrix
ΣJ is replaced by an upper bound BJ , i.e. by a matrix that
fulfils the inequality BJ ≥ ΣJ for all admissible values of Ω.
Then, the construction for fusion under known correlation is
applied to obtain the weights, WJ = (JTB−1

J J)−1JTB−1
J x̂J ,

and subsequently the self-assessment matrix, B = WJBJW
T
J ,

which is an upper bound of the mean square error matrix of
the fused estimate, B ≥ Σ. In the Gaussian case (3), the
confidence set can be constructed as follows,

X =
⋃
Ω

ε(x̂,Σ(Ω), q) = (7a)

={x̂} ⊕ ε(0,W1Σ1W
T
1 , q)⊕ ε(0,W2Σ2W

T
2 , q) ⊆ (7b)

⊆ε(x̂, B, q), (7c)

where ⊕ denotes the Minkowski sum operation. The first
equality (7a) is a simple suboptimal construction with the
dependence of Σ on Ω explicitly denoted; the set for the actual
value Ω is covered by the union for all admissible values of this
unknown parameter. The second equality (7b) follows from
[19]. The inclusion (7c) is a standard relation of ellipsoids for
B ≥ Σ.

B. Bayesian Estimation

The classical estimation fuses the estimates x̂i by arbitrary
weights Wi. The optimal weights can vary according to the
selection of an optimality criterion. The mean square error
matrix Σ is an expectation, wherein the estimates are random
and the state x need not be random.

In the literature, the estimates x̂i are frequently referred
as “means”. This incorrect notation likely stems from the
fact that for a stochastic state x, the optimal estimate for a
specific criterion (the mean square error one) is the conditional
expectation. The objective Bayesian approach aims at finding
the conditional densities p(x|zi), p(x|z1, z2) of a stochastic
state, while the estimate construction can be postponed. Even
if all densities are Gaussian and the means are linearly related,
there is no space for designing arbitrary weights. Also, the
conditional covariance matrices of the state x are functions of
the measurements zi, even if their values are constant. The
conditional densities are frequently presented for particular
realisations of the measurements zi and denoted simplistically
as pi(x) and p1,2(x). This suggests that the state x has multiple
densities at the same time, which makes no sense in the
objective framework.

In the subjective Bayesian case, the densities pi(x) and
p1,2(x) are expert opinions and can exist simultaneously. How-
ever, no concepts like random variables, unbiasedness, mean

square error matrices or confidence sets make sense there. The
subjective combinations like the weighted arithmetic mean,
p1,2(x) = ωp1(x) + (1− ω)p2(x), or the weighted geometric
one, p1,2(x) ∝ (p1(x))ω + (p2(x))1−ω , can be designed. The
latter do show some similarities for Gaussian densities with
the fusion under unknown correlation, but the philosophies
are utterly incompatible. The subjective case also tempts to
mimic the joint distribution of errors by a joint density p(x, x)
of the same state x and to define the fused density by some
marginalisation or conditioning. Such an approach has poor
theoretical foundations as well.

IV. ANALYSIS OF THE PROBLEM

A part of the problem of linear fusion under random correla-
tion has an analytic solution, the rest requires numerical com-
putations or crude approximations. Namely, the computation
of the mean square error matrices ΣJ and Σ can use the law of
total expectation, which allows an unconditional expectation to
be computed as an expectation of a conditional expectation,
E{x̃1x̃

T
2 } = E{E{x̃1x̃

T
2 |Ω}}. The factorisation (6) and the

linearity of expectation thus give Σ1,2 = Σ
1
2
1 E{Ω}Σ

T
2
2 . The

weights WJ and the mean square error matrix Σ are designed
according to the standard formulas shown in Section II-A.

The problem of confidence set design has no analytic
solution for a general density p(Ω). Although the densities
p(x̃1, x̃2|Ω) are assumed to be Gaussian for each Ω, the
density p(x̃1, x̃2) is no more Gaussian. An analogy holds for
the density p(x̃|Ω), which is Gaussian, and the density p(x̃),
which is not. It is possible to consider only the support of
p(Ω), i.e. those Ω with nonzero values of the density, and
use the construction (7) designed for unknown correlation.
The numerical solution is based on approximation of the
density p(x̃), which is computationally expensive. These two
approaches will be further commented.

The approach based on the support of p(Ω) yields large
confidence sets. Moreover, a question arises whether the mean
square error matrix or the size of the confidence sets are
minimised. If the weights WJ are designed by the standard
formulas with the expected correlation matrix Σ1,2, the con-
fidence set (7) will be larger than in the case of the weights
WJ designed according to the confidence set size. Vice versa,
the latter case produces mean square error matrix Σ with a
size larger than the former case.

The numerical approach computes integrals in order to
obtain probabilities P (x ∈ X), e.g. over a grid of points. Since
typical confidence levels ` are close to one, high numerical
precision is required. There is the curse of dimensionality;
the approach becomes costly very fast with increasing di-
mensions of the state x. A crude solution to the confidence
set design is to pretend that the density p(x̃) is Gaussian
with the covariance matrix given by the expectation over the
covariance matrices related to the Gaussian densities p(x̃|Ω).
Unfortunately, the confidence level ` need not be achieved by
designing the corresponding confidence ellipsoid.

The following section illustrates the designs.
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V. ILLUSTRATION

Let the state x be deterministic and scalar. Let the measure-
ments z1, z2 have an additive Gaussian error with zero mean
and variances σ2 and 1 respectively, i.e. z1 ∼ N (x, σ2) and
z2 ∼ N (x, 1). Let the joint density of the measurement errors
be Gaussian and denote the correlation coefficient of the errors
by ρ. Let the estimates x̂i of the state x be given directly by
the measurements, x̂i = zi. To fulfil the assumptions posed
in Section II-B, it is further needed the specify the density of
the nuisance parameter ρ. Let it be uniform. Thus, it holds

ΣJ(ρ) =

[
σ2 ρσ
ρσ 1

]
, p(ρ) =

{
1
2 −1 ≤ ρ ≤ 1
0 otherwise

. (8)

The local estimates x̂i are unbiased. Since the expectation
of ρ is zero, E{ρ} = 0, the mean square error optimal fusion
weights are given by

W1 =
1

σ2 + 1
, W2 =

σ2

σ2 + 1
(9)

and the fused estimate is unbiased. For these weights, the
conditional variances of the Gaussian densities p(x̃|ρ) and
the unconditional variance of the estimation error x̃ are given
respectively by

Σ(ρ) =
σ2

σ2 + 1
+

2σ3

(σ2 + 1)2
ρ, Σ =

σ2

σ2 + 1
. (10)

Fig. 1 illustrates the densities of local and fusion errors.
The variance σ2 is chosen as σ2 = 4. It the top left
figure, ellipses ε(0,ΣJ , q) are shown for the Gaussian densities
p(x̃1, x̃2|ρ) for ρ = −0.99,−0.5, 0, 0.5, 0.99. The quantile
q corresponds to the 0.95 confidence level `. Since the
variance of error of the optimal estimate for known ρ is
given by Σ = ([1, 1]Σ−1

J [1, 1]T )−1 and the ellipses are given
by (4), the results of the ρ-optimal fusion can be read on
the line passing through the origin and [1, 1]T (the dashed
line). If the parameter ρ is unknown, the fusion cannot be
better than that corresponding to the ellipse with the largest
radius in the direction [1, 1]T , i.e. that for ρ = 0.5 in this
example. Nevertheless, the fusion weights are selected only
once, which means that the actual fusion results can be read
as certain marginal variances. These variances can be found by
projecting the ellipses onto the dashed line, where the direction
is indicated by the dotted lines and is orthogonal to WJ . The
direction corresponds to the direction of the tangent line to
the ellipse for the zero-valued expectation of ρ (8), where the
tangent is taken in the point of intersection of the ellipse and
the dashed line.

The bottom left figure of Fig. 1 shows the conditional
densities of the fused error p(x̃|ρ) and the ρ-optimal 0.95
confidence intervals ε(0,Σ, q) (delimited by the dots). The
intervals may also be read from the dashed line in the top
left figure. The right column of Fig. 1 shows the uncondi-
tional densities p(x̃1, x̃2) and p(x̃) and the moment-matched
Gaussian densities. It can be seen from the bottom right figure
that the interval (delimited by the dots) based on the Gaussian
approximation is slightly smaller than that (delimited by the

−4 −2 0 2 4
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0

2

x̃1

x̃
2

 ρ=−0.99 ρ=0 ρ=0.99
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2
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p
(x̃
)

p(x̃)

N (0,Σ)

Fig. 1. Conditional and unconditional densities of local and fusion errors –
p(x̃1, x̃2|ρ) (top left – five examples), p(x̃|ρ) (bottom left – five examples),
p(x̃1, x̃2) (top right – six density levels and approximation) and p(x̃) (bottom
right – density [solid line] and its Gaussian approximation [dash-dotted line]).

circles) based on the exact density p(x̃). The probabilities that
the error x̃ lies within these intervals are 0.9428 and 0.95,
respectively. That is, the approximation need not provide a
sufficiently high confidence level.

The top right figure of Fig. 1 shows six levels of the
density p(x̃1, x̃2), namely 0.01, 0.03, . . . , 0.11, and the ellipse
ε(0,ΣJ , q). The shaded area corresponds to the local errors x̃1,
x̃2 that lead to the fusion errors x̃ within the indicated 0.95
confidence interval. The values of the density p(x̃) can be
obtained by integrating the joint density over the lines parallel
with the axis of the shaded area, i.e. the direction shown by the
dotted lines in the top left figure. They can also be obtained
from the Gaussian densities p(x̃|ρ) and the density p(ρ).

The design of confidence sets by pretending unknown
correlation is discussed next. If the weights WJ are optimal
according to the mean square error criterion, i.e. given by
(9), the confidence sets X designed by (7b) are given by
{x̂} ⊕ [− σ

σ2+1

√
q, σ
σ2+1

√
q] ⊕ [− σ2

σ2+1

√
q, σ2

σ2+1

√
q], that is

X = [x̂− σ2+σ
σ2+1

√
q, x̂+ σ2+σ

σ2+1

√
q]. These intervals with random

centres x̂ have constant lengths 2σ
2+σ
σ2+1

√
q. On the other hand,

the choice σ2 = 4 made in this example implies that the
estimate x̂2 has smaller error variance than the first estimate
x̂1. The weights designed as W1 = 0 and W2 = 1 lead to
x̂ = x̂2. The corresponding mean square error Σ = 1 is higher
than in the preceding case (10), but the confidence intervals
are given by X = [x̂2 −

√
q, x̂2 +

√
q], i.e. they are shorter.

The upper bound B used in (7c) can be given by a standard
construction as ω−1W1Σ1W

T
1 +(1−ω)−1W2Σ2W

T
2 with the

choice ω =
√
W1Σ1WT

1 (
√
W1Σ1WT

1 +
√
W2Σ2WT

2 )−1, i.e.
by B = (σ

2+σ
σ2+1 )2. This bound B is equal to the conditional co-

variance matrix Σ(ρ) for maximal positive correlation; see(10)
for ρ = 1. This also illustrates that in the one-dimensional
case, equality of the sets in (7b) and (7c) can be achieved.
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The analytical results can be supported by Monte Carlo sim-
ulations; a pseudocode is provided in Algorithm 1. Parameters
are set first, functions are called next. The actual Matlab code
for a specific setting can be found next to the % character.
The purpose of the pseudocode is to highlight the philosophy
of the linear fusion.

Algorithm 1 Pseudocode of Monte Carlo simulation
Set x or define p(x). % EX=5; CX=0;
Define z1, z2. % H1=1; H2=1; E1=0; E2=0; C1=4; C2=1;
Define p(ρ), e.g. as uniform on the interval [−1, 1].
Choose the number of Monte Carlo runs. % N=10000;

X=MCstate(); % X=mvnrnd(EX,CX,N)’;
rho=MCcorrelation(); % rho=2*rand(1,N)-1;
[Z1,Z2]=MCmeasurements(X,rho);

% for k=1:N,
% C12=sqrt(C1)*rho(k)*sqrt(C2);
% V=mvnrnd([E1 E2],[C1 C12;C12 C2])’;
% Z1(k)=H1*X(k)+V(1); Z2(k)=H2*X(k)+V(2);
% end

[hatX1,S1]=estimator1(Z1); % hatX1=Z1; S1=4;
[hatX2,S2]=estimator2(Z2); % hatX2=Z2; S2=1;
[hatX,S]=fusion(hatX1,hatX2);

% hatX=1/5*hatX1+4/5*hatX2; S=4/5;
[trueS,Gauss level]=evaluation(X,hatX);

% histogram(X-hatX,’Normalization’,’pdf’)
% trueS=cov(X-hatX);
% Gauss level=mean((X-hatX).ˆ2/S<=chi2inv(0.95,1));

It has to be stressed that the random parameter ρ must
not be an input parameter of the estimators and the fusion.
These functions can be realised in hardware devices, where
the inputs zi and outputs x̂i are physical signals and the self-
assessment matrices correspond to the data in data-sheets.
The data-sheets cannot depend on any signal and their data
need not match the reality. The true performance is not
evaluated over a single run and can be verified by repeating
the experiments. The pseudocode generates estimates of the
density p(x̃), covariance of x̃ or confidence levels resulting
from the Gaussian approximation as representatives of the
evaluation. The code can be easily modified for providing
conditional quantities by setting a constant “rho”.

VI. SUMMARY

Fusion under random correlation has been formulated and
in order to stress the extent of the philosophical framework,
various incompatible approaches have been commented. The
solution to the chosen approach has been presented. Whereas
the minimisation of the mean square error matrix is straightfor-
ward, the design of confidence sets is intricate. The former is
based on computing the expectation of the cross-correlation
matrix of the estimation errors. The latter is either com-
putationally expensive, relies on crude approximations or is
designed for unknown correlation. The theoretical background
has been illustrated by a simple analytical example. Guidelines
for verifying the results via a simulation have been given last.
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