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Abstract—The empirical mode decomposition (EMD) is a well-
known data-driven signal decomposition. It produces a finite
number of intrinsic mode functions (IMF) well adapted to Hilbert
spectral analysis.
Since the EMD is not a theoretical approach but rather an
iterative algorithm, the question of how the EMD can achieve
spectral band separation remains open. Several attempts to ex-
perimentally and theoretically explore this issue were addressed.
However, to the best of our knowledge, none of them has
investigated the EMD from an ordinal pattern point of view.
The purpose of this paper is threefold. First, the EMD limitations
are reexamined using the concept of ordinal patterns (OP) of
length 3. Second, we propose to incorporate the OP probability
distribution into the definition of the mean envelop and the
stopping criterion during the sifting process. This turns out to
be helpful in reducing mode mixing and thus improves the EMD
robustness. Finally, we propose to extend the EMD to different
pattern lengths (2, 4, 5, etc). Academic and real-life time series
are processed and the results show that the ordinal pattern-based
EMD outperforms the classical EMD.

Index Terms—Empirical mode decomposition, ordinal pattern,
time series.

I. INTRODUCTION

There are a large number of signal decomposition-based
methods [1]–[11] that are of great interest in many engineering
fields. Among these methods, the empirical mode decompo-
sition (EMD) is a famous approach that was proposed by
Huang et al. [1] for recursively decomposing a signal as a
sum of intrinsic mode functions (IMF). The IMF are zero
mean oscillating functions of data-driven separated spectral
bands and they are well-behaved with the Hilbert transform.

Despite the EMD popularity, no existing theory justifies
the empirical way the EMD operates. Indeed, EMD has no
analytic definition. Only a few studies have contributed to
better understanding of some of its specific aspects [12], [13].
We propose to address this issue using the ordinal pattern
concept. The potential of such a concept has been recently
highlighted in [14], [15].

Given a discrete time-series, the ordinal patterns (OP) of
length d are obtained by comparing and ranking d neigh-
bouring sample values. By taking into account 3 consecutive
samples xt, xt+1 and xt+2, the extrema identification in the
EMD turns out to be a localization of four OPs of length
d = 3: 132, 231, 312 and 213. The EMD sensitivity to
noise, sampling frequency and mode mixing can therefore be
linked to the OP distribution (frequency of occurrence of the

patterns). This is a fact that has not been previously pointed
out in the literature.

We propose to take into account the OP distribution when
calculating the average envelop during the sifting process.
Indeed, the mixing mode can be reduced by considering the
most probable patterns. Moreover, we propose a stop criterion
for the sifting process based on the OP theory in order to relax
the original IMF definition. Preliminary results show attractive
performance compared to the original EMD. Finally, thanks to
the OP concept, an extension of the EMD to other OP length
is possible and helps emerge new interpretation.

The paper is organized as follows. Section II reformulates
the EMD using the OP concept and explores the EMD
limitations from an OP point of view. Section III describes
how to integrate the OP distribution into the EMD algorithm
in order to improve the EMD performance. The extension to
other OP lengths is also presented. Section IV presents an
illustration and comparison using theoretical and real signals.
Finally, conclusions are drawn in Section V.

II. EMD REVISITED FROM AN OP POINT OF VIEW

This section briefly recalls the EMD algorithm. The aim is
then to highlight the potential link between the OP theory and
the EMD performance.

A. Classical EMD

The Algorithm 1 summarizes the effective EMD steps. We
remind that the stopping criterion of the sifting process was
initially set as: the total number of extrema and the number of
zero-crossings differ by at most one. As this criterion may lead
to no physical meaning IMFs, a Cauchy-based stop criterion
is preferred [16] even though the resulting IMFs may fail to
satisfy the original IMF definition. Other considerations or
modifications of the original EMD have also been proposed in
[17], [18] to overcome the EMD limitations. Remind that the
EMD is known to be sensitive to noise, sampling frequency
and mode mixing of signal components with close frequencies.

B. EMD linked to OP concept

From an OP point of view, the EMD first step can be
considered as the localization of four OP of length d = 3
among six (d!) possible OP (see Fig. 1). These six OP are
obtained by ranking the values of successive samples xt, xt+1
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Algorithm 1 EMD

Ensure: n = 0.
1: Locate the maxima and minima of a time series xt.
2: Construct the signals Emaxt and Emint by interpolating

these maxima and minima, respectively.
3: Construct a signal average Mt =

Emaxt+Emint

2 .
4: Construct a detail signal Dt = xt −Mt.
5: Sifting process: Repeat steps 1 to 4 by replacing xt by

Dt until a stopping criterion is reached.
6: n←− n+ 1 and set the nth IMFt = Dt.
7: Restart steps 1 to 6 by replacing xt by the residual signal

xt −Dt.

Fig. 1: Six ordinal patterns of length 3 obtained by comparing
and ranking three successive sample values: xt, xt+1, xt+2.

and xt+2. Rank 1 is assigned to the lowest value while rank 3
is assigned to the highest value. We assume that equal values
are very rare for any weak stationary process [14]. The OP
231 and its reversal pattern 132 represent the maxima of the
considered signal whereas the OP 312 and its reversal pattern
213 represent the minima. Note that the EMD does not take
into account the ascending and descending OP: 123 and 321.

C. EMD limitations from an OP point of view

As extrema play an important role in the behaviour of the
EMD algorithm, the authors in [13] theoretically determined
the extrema rate (the average number of extrema per unit
length) for a particular continuous-time signal xt. This signal
xt was a sum of two pure tone components:

xt = cos(2πt) + ar cos(2πfrt+ φ), (1)

where the amplitude ratio ar ∈
[
10−2, 102

]
and the frequency

ratio fr ∈ ]0, 1]. As stated in [13], extrema rate helped explain
the mixing mode occurring when arfr ≈ 1. From an OP of
view, one simple but meaningful quantity that can measure
similar information as the extrema rate is the turning rate α
[15]

Turning rate α = p132+p231+p312+p213 = 1−p123−p321,
(2)

where pΠi
is the occurring frequency of pattern Πi of length

d = 3. This occurring frequency (OP probability distribution)
can actually be estimated for any weakly stationary discrete
time series as follows [14]:

pΠi
=
♯ {t |0 ≤ t ≤ N−d+1, (xt, xt+1, xt+2) is of type Πi}

N − d+ 1
,

(3)
where ♯ denotes the cardinal and N is the total number
of samples. The turning rate (2) measures the frequencies

of turning points (local extrema) and reflects the roughness
of the discrete time series. Indeed, α = 1 is maximal
for an alternating time series (rise and fall). It is equal to
4
π arcsin

(
1
2

)
= 2

3 for a white noise, and it reaches a minimum
α = 0 for monotonic time series. Note that α = 1 is also true
for any pure sinusoidal signal sampled at the Nyquist rate,
even if this signal is embedded in noise with a signal to noise
ratio (SNR) greater than 20 dB.
For lack of space, we only focus on the turning rate (2). How-
ever, other interesting quantities can be considered, including
the permutation entropy, the up-down equilibrium, the rotation
symmetry index and the persistence defined in [14], [15].

Fig. 2a and 2b display the turning rate α (2) as a varying
function of the two parameters ar and fr of the signal
defined by (1). Two different sampling frequencies (Fs) are
considered: Nyquist rate (2 Hz) and 100 Hz.

Fig. 2c and 2d illustrate the EMD capacity of separation of
the two components of the considered signal (1). This capacity
was actually measured in [13] according to the criterion
defined by

C(ar, fr) =
||1stIMFt − cos(2πt)||
||ar cos(2πfrt+ φ)||

, (4)

where ||.|| denotes the L2 norm.
We also add Fig. 2e and 2f where the total inability of

the EMD to decompose the signal (1) is measured using the
criterion we define as follows

IC(ar, fr) =
||1st IMFt − xt||
||ar cos(2πfrt+ φ)||

. (5)

As reported in [13] and in agreement with the theory estab-
lished there, three regions are be noticed from Fig.2d and 2f.

Region I: (arfr ≤ 1 and fr ≤ 0.7) the EMD successfully
separates the two modes. Region II: (arfr ≤ 1 and fr ≥ 0.7)
the EMD is totally unable to decompose the considered signal.
Region III: (arfr ≥ 1) a partial failure of the EMD to correctly
separate the two components. As it can be seen from Fig. 2a,
2c and 2e, these regions edges are actually sensitive to the
sampling frequency values.

Regarding the turning rate (2), Region I and Region II are
merged in one single region where α = 0.02. This value is
actually equal to that of the highest frequency mode cos(2πt)
sampled at Fs = 100Hz (α = 2f0

Fs
= 0.02 with f0 = 1Hz).

However, the examination of the OP distribution reveals
that region I suffers from an imbalance of extrema (p231 +
p132 − (p312 + p213) ̸= 0) whereas region II satisfies the
extrema equilibrium (p231 + p132 − (p312 + p213) ≈ 0).
These findings help explain why the EMD acts differently in
these two regions. In Region I, EMD will extract the IMFs
until the extrema equilibrium is reached. In Region II, no IMF
extraction because the signal itself satisfies the IMF definition.

Regarding region III, the turning rate is varying from 0.01
to 0.02, as if the signal is an amplitude modulated sinusuoid
with frequency 1+fr

2 .
To go one step further, since the sampling frequency and

the noise may modify the ordinal pattern distribution of the
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(a) α (2) with Fs = 2Hz.
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(b) α (2) with Fs = 100Hz.
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(c) C (4) with Fs = 2Hz.
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(d) C (4) with Fs = 100Hz.
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(e) IC (5) with Fs = 2Hz.
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(f) IC (5) with Fs = 100Hz.

Fig. 2: Turning rate α (2) and the EMD Performance (4)
and (5) of two-tones signal (1) sampled at (left side) Nyquist
rate frequency Fs = 2Hz and (right side) Fs = 100 Hz.
Critical curves predicted by continuous time theory in [13]
are provided: dotted (arfr = 1) and dash-dotted (arf2

r = 1).
The black line is the contour C(ar, fr) = 0.98.

time series, we evaluate α for a pure tone signal (cos(2πt))
embedded in noise. Fig. 3 illustrates the variation of α (2)
as a function of both Fs and the SNR. As it can be noticed
from Fig. 3, the turning rate reaches the maximum 1 at the
Nyquist rate Fs = 2Hz for an SNR value greater than 20 dB.
However, for example, at SNR = 30 dB, this turning rate
reaches a minimum at Fs = 20Hz and it reaches the typical
value 2

3 of white noise at Fs = 200Hz. In addition, a plateau
α = 2

3 is noticed for higher Fs whatever the SNR ratio.
This again allows us to understand the EMD behaviour with
respect to sampling frequency and the noise level. Indeed, at a
high sampling rate, α measures a high amount of noise-related
patterns, the EMD algorithm will first extract noise-related
IMFs before reaching an amount of patterns that actually
reflect the pure tone itself.

D. Open questions

The EMD performance seems to be closely linked to the
ordinal pattern distribution, and in particular to the patterns

Fig. 3: The turning rate α (2) varies as a function of the
sampling frequency and the SNR. For each SNR value, 30
Monte Carlo simulations of a 100 periods of a pure sinusoid
cos(2πt) embedded in noise are generated.

Fig. 4: Four curves: (blue) E132t , (red) E231t , (magenta)
E312t and (yellow) E213t obtained by separate interpolation
of maxima and minima issued from the same pattern.

representing extrema: 312, 231, 132 and 213. These patterns
are, however, far from being the most probable ones. Can
taking into account the ascending and descending patterns
improve the EMD performance? If so, what will the best
combination of patterns and how can this combination be
incorporated into the EMD algorithm? Furthermore, is it
possible to define an EMD based on the localization of patterns
of length greater or less than 3? In the next section, we propose
one way but not the only way, to answer these questions.

III. PROPOSED OP-BASED EMD

We propose a new version of the EMD algorithm based on
the OP concept, our aim being to take into account the OP
distribution. The modification of the original EMD is reported
in Algorithm 2 and detailed in three points in the follow-
ing. First, we propose to distinguish between contribution
of patterns and their reversal patterns as shown in Fig. 4.
Each pattern is considered apart when building interpolated
envelops. For example, we identify all the points xt of type
pattern 132 and then interpolate them to form the curve E132t .
We use the same procedure with its reversal pattern 231 to
obtain E231t . We proceed in the same manner with patterns
312 and 213 to construct E312t and E213t , respectively. We
propose also to construct two other curves E123t and E321t

from the localization of ascending and descending patterns
123 and 321, respectively. As shown in Fig. 5a, the idea is to
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(a) Segments of pattern 123. (b) Segments of pattern 321.

Fig. 5: Two curves: E123t and E321t constructed by interpolat-
ing the centers of segments of successive samples of ascending
and descending patterns.

identify the centers of segments formed by successive samples
of pattern 123 and to interpolate them in order to obtain a curve
E123t . We proceed similarly for the pattern 321 (see Fig. 5b).

We define the average envelop as the sum of all the EΠt

weighted by the their pattern distribution:

Mt =

d!=6∑
i=1

pΠi
EΠt

. (6)

We perform the sifting process until a stopping criterion
is reached. We can use the following OP-based stopping
criterion:

Persistence |p123 − p321| ≤ 1− ϵ (7)

The persistence (7) was defined in [15]. It seems to be suitable
for balanced processes and it highlights hidden periodicity. The
performance of the proposed OP-based EMD will be compared
to the classical EMD in the next section.

Algorithm 2 OP-based EMD

Ensure: n = 0.
1: Localize the six OPs of length 3 of a finite discrete time

series xt and evaluate the OP distribution.
2: Construct four curves EΠit

by interpolating the extrema
of each pattern, separately.

3: Construct two curves EΠit
from the ascending pattern and

the descending one as shown in Fig. 5a and 5b.
4: Construct a signal average Mt =

∑d!=6
i=1 pΠi

EΠit
.

5: Construct a detail signal Dt = xt −Mt.
6: Sifting process: Repeat steps 1 to 5 by replacing xt by

Dt until a stopping criterion (7) is reached.
7: n←− n+ 1 and set the nth IMFt = Dt.
8: Restart steps 1 to 7 by replacing xt by the residue xt−Dt.

Very importantly, the proposed OP-based EMD method can
be easily extended to an OP of length d ̸= 3. Indeed, all the
steps of the Algorithm 2 can be defined for d = 2, d = 4,
d = 5 etc. For example, for d = 2, there are only two ordinal
patterns (ascending) 12 and (descending) 21 with probability
distribution p(xt < xt+1) = p12 and p(xt > xt+1) = p21.
For d = 4, there will be 4!=24 patterns to be localized and
24 interpolated curves. However, a necessary condition will
be that the sample number N >>> d! to ensure an unbiased
estimation of the OP distribution.
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Fig. 6: OP-based EMD performance: separating capacity of
a sum of two two-tones signal (1) sampled at Fs = 100 Hz.
Critical curves predicted by continuous time theory in [13] are
provided: dotted (arfr = 1) and dash-dotted (arf2

r = 1). The
black line is the contour C(ar, fr) = 0.98.

IV. RESULTS AND DISCUSSION

In order to illustrate performance of the proposed OP-based
EMD and to compare it with the classical EMD, we consider
three signals

• the academic signal defined by (1) and composed of the
sum of two non-modulated frequency components. The
sampling frequency is Fs = 100 Hz.

• a (odd and zero-mean) square waveform of time period
T = 10ms sampled at Fs = 1KHz. Before dealing
with this square waveform, we should remind that such
an analog signal has a Fourier series expansion and an
infinite number of harmonics:

xt ≈
∞∑

n=0

4

(2n+ 1)π
sin(2π(2n+ 1)

t

T
). (8)

And, to avoid the aliasing problem, this signal is passed
through an anti-aliasing filter.

• a real-data: the well-known monthly sunspot series re-
sampled to obtain Fs = 1 year−1 (http://sidc.oma.be).

Fig. 6 depicts the separating criterion (4) for the OP-based
method using the signal defined by (1). The stopping criterion
(7) is used. As one can notice from Fig. 2d, the region of
successful separation of the two modes is highly increased
(fr < 0.9): the mixing mode is reduced.

Fig. 7 shows the first two IMFs extracted from the square
waveform using the EMD and the OP-based EMD to be
superimposed to the first two theoretical harmonics (Ctht

).
The mean error (||Ctht − IMFt||2), measured for the High
Frequency component, is equal to 2.19 using the OP-based
EMD and it is equal to 2.39 using the classical EMD. For
the Low frequency component, this error is 1.46 and 1.74,
respectively.

Finally, Fig. 8 illustrates the processing of the sunspot data
using the OP-based EMD with d = 2 and d = 3. The very

2189



100 110 120 130 140 150 160 170 180 190

Time (sec)

-1

0

1

S
ig

n
a
l

100 110 120 130 140 150 160 170 180 190

Time (sec)

-0.5

0

0.5

C
o
m

p
2

100 110 120 130 140 150 160 170 180 190

Time (sec)

-1

0

1

C
o
m

p
1

Fig. 7: (black line) Analog (odd and zero mean) Square
waveform. The first two IMF extracted using (red line) the
OP-based EMD (d=3) and (magenta line) the classical EMD
superimposed to the (blue line) first two theoretical harmonics.

low frequency content seems to be better removed from the
sum of the two IMF extracted using the OP-based EMD with
d = 2.

V. CONCLUSIONS

The well-known signal decomposition method, EMD, is
revisited using the concepts of ordinal pattern of length 3.
We then proposed a new OP-based formulation of the EMD
where the pattern distribution is involved into the sifting
process. The proposed OP-based EMD reduces the mixing
mode and it hence outperforms the classical EMD when
applied to time series with close frequency components. In
addition, this proposed OP-based EMD can be extended to any
ordinal pattern length. The potential of the OP-based EMD
with ordinal pattern of length greater than 3 will be deeply
addressed in future work.
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