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Abstract—In this paper, we investigate and compare approxi-
mate Bayesian methods for high-dimensional linear inverse prob-
lems where sparsity-promoting prior distributions can be used
to regularized the inference process. In particular, we investigate
fully factorized priors which lead to multimodal and potentially
non-smooth posterior distributions such as Bernoulli-Gaussian
priors. In addition to the most traditional variational Bayes
framework based on mean-field approximation, we compare
different implementations of power expectation-propagation (EP)
in terms of estimation of the posterior means and marginal
variances, using fully factorized approximations. The different
methods are compared using low-dimensional examples and
we then discuss the potential benefits of power EP for image
restoration. These preliminary results tend to confirm that in
the case of Gaussian likelihoods, EP generally provides more
reliable marginal variances while power EP offers more flexibility
for generalised linear inverse problems.

Index Terms—Approximate Bayesian inference, Expectation-
Propagation, Linear inverse problems, Variational Bayes, Spar-
sity.

I. INTRODUCTION

Large scale linear inverse problems are ubiquitous in a
variety of imaging problems where images of interest can
not only have millions of pixels, but also dozen to hundreds
of spectral channels [1]. Similar problems also arise when
restoring image sequences (e.g., videos). Statistical inference
in such high-dimensional problem often relies on statistical
properties of the signal of interest, and in particular its compact
representation in particular domains of representation (e.g.,
Fourier domain, wavelet domains, library of known patterns).
As such, leveraging the sparsity or compact representation of
parameters of interest has received a significant attention over
the last 30 years, in particular when combined with high-
dimensional optimization methods [2], [3]. However, high-
dimensional inference is often reduced to point estimation
(penalized maximum likelihood or maximum a posteriori
estimation) and uncertainty quantification remains difficult
in general. Within the Bayesian framework, Markov chain
Monte Carlo sampling is the most widely used approach to
uncertainty quantification but efficient and generic samplers
for high-dimensional problems are still required. Variational
methods represent a computationally attractive alternative, pro-
vided that the approximations capture well the structure of the
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posterior distribution. While Variational Bayes methods can
provide useful approximate posterior means, they often dras-
tically underestimate uncertainties, in particular when mean-
field approximations are used. In this paper, we investigate a
more general class of variational inference tools called power
EP (or α−EP) [4], [5] for large scale linear inverse problems
where the sparsity-promoting prior can induce a multimodal
and potentially non-differentiable posterior distribution.

II. BAYESIAN MODEL AND EXACT INFERENCE

A. Bayesian model
In this work, we address the recovery of x ∈ RN from noisy

observations y ∈ RM which result from the transformation of
x via a known linear operator A ∈ RM×N .

1) Likelihood: While the observation noise could be ad-
ditive or multiplicative, here we mainly focus on additive
Gaussian noise leading to the following likelihood

y|Ax ∼ N (y;Ax,Σ), (1)

where Σ is the noise covariance matrix assumed to be diagonal
and known. The Gaussian noise assumption is not crucial for
some of the methods discussed in this work, but it makes their
comparison easier.

2) Prior model: As mentioned above, we consider fully
factorized prior distributions such that

f(x|Θ) =

N∏
n=1

fx(xn|θn), (2)

where fx(xn|θn) is parameterized by a set of hyperparameters
denoted by θn, and Θ = {θn}n is known. In the remainder of
the paper, Θ is omitted in the expression of the prior model
to simplify notations. When x is expected to only contain
a small number of large values, several prior distributions
{fx(xn|θn)}n can be chosen to encode such prior belief.
Classical choices include Laplace distributions [6], Student’s t-
distributions [7], and spike-and-slab priors [8]. For arguments
similar to those motivating the Gaussian noise model, we
consider spike-and-slab priors based on i) mixtures of two
zero-mean univariate Gaussian distributions (MoG2) and ii)
Bernoulli-Gaussian (BG) mixtures. These priors are chosen
as they lead to multimodal posterior distributions (in contrast
to the product of Laplace priors, when combined with the
Gaussian likelihood). Moreover, the BG distributions are non-
differentiable with respect to (w.r.t.) x, which might limit the
range of variational methods applicable for the problem at
hand.
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B. Posterior distribution and exact inference

Given the likelihood defined in (1) and the prior model in
(2), the exact posterior distribution of x, i.e. f(x|y), can be
expressed, up to an (often) intractable constant, as

f(x|y) ∝ f(y|x)f(x). (3)

Estimation of x beyond maximum a posteriori (MAP) esti-
mation is generally challenging in high-dimensional problems
(N ≫ 1) due to the intractable integrals involved to com-
pute (marginal) moments a posteriori. A notable exception is
when f(x|y) is log-concave, but not necessarily smooth. In
such cases, recent MCMC methods can be used to sample
approximately from f(x|y) [9]–[12]. In more general scenar-
ios, more classical MCMC samplers can be used, including
Gibbs sampling to sample sequentially (blocks of) elements
of x from their conditional distributions. However, Gibbs
sampling and Metropolis-Hastings updates do not scale well
with increasing N and alternative methods are required to
approximate posterior moments such as means and (marginal)
variances efficiently. The next section discusses variational
inference methods that can be used to approximate (3) for
large scale problems where N ≫ 1.

III. SCALABLE VARIATIONAL INFERENCE USING POWER
EXPECTATION-PROPAGATION

Variational inference (VI) methods consist of approximating
a distribution, f(x|y) here, by a so-called approximating
distribution q(x), such that f(x|y) ≈ q(x). The distribution
q(x) is often chosen such that its moments are easy to
compute and the different VI methods mainly differ by the
similarity measure used to compare f(x|y) and q(x). For
instance, variational Bayesian (VB) methods, which represent
the most classical family of VI methods, rely on minimizing
the Kullback-Leibler (KL) divergence

KL (q(x)||f(x|y)) (4)

subject to additional constraints on q(x). These constraints
can be independence constraints, leading to mean-field VB
(MFVB) and/or constraints on the admissible family of ap-
proximating distributions, leading to fixed-form VB (FFVB)
(see recent tutorial [13] and reference therein). For the
Bayesian model in (3) in high-dimensional settings, one of the
most suitable VB method is that proposed in [14]. This method
considers an extended Bayesian model including binary labels
for the spike-and-slab prior and a mean-field approximation
is used such that q(x) factorizes over the N elements of x.
While the method was proposed with a BG prior, it can easily
be modified for MoG2 priors.

While full factorization of q(x) may not be a reasonable
assumption for some problems, it is the most common and
simple approach to scalability as it does not require handling
large covariance or precision matrices. For this reason, in the
remainder of this section we investigate VI methods relying
on such constraints. Different covariance constraints will be
discussed in Section V.

A. General power EP method

In a similar fashion to FFVB, in EP methods, the practi-
tioner can choose the set of admissible distributions for q(x),
generally in the exponential family, and especially Gaussian
distributions for high dimensional problems, as is done here.
EP and its extensions, such as α−EP [5], rely on factorizations
of q(x) which mimic that of f(x|y). More precisely, we fac-
torize q(x) = q1(x)q0(x) using 2 unnormalized multivariate
Gaussian densities: q1(x), which will approximate f(y|x) and
q0(x), which approximates f(x). The mean and covariance
matrix of qi(x) are denoted by (mi,Di) (i ∈ {0; 1}) and the
mean and covariance of q(x), denoted by (m,D) satisfy{

D−1 = D−1
1 +D−1

0

D−1m = D−1
1 m1 +D−1

0 m0
(5)

To ensure D is diagonal and positive definite, so are D0 and
D1. We now briefly recall the working principle of α−EP,
which updates sequentially the variational parameters of q0(x)
and q1(x) until convergence.

1) Update of q1(x): We first define a so-called cavity
distribution q\1(x) = q(x)/q1(x) ∝ q0(x). To update q1(x),
we aim to solve

qnew(x) = argmin
q∈F

Dα1
(f(y|x)q\1(x)||q(x)), (6)

where F denotes the set of multivariate Gausian densities with
positive definite diagonal covariance matrices and Dα1

denotes
the α−divergence given by

Dα(p||q) =
4

1− α2

(
1−

∫
p(x)(1+α)/2q(x)(1−α)/2dx

)
, (7)

for α /∈ {−1; 1}. When α = 1, it reduces to KL(p||q), and
when α = −1, it is KL(q||p). For α ̸= −1 and following [5],
solving (6) reduces to

qnew(x) = proj
[(
f(y|x)q\1(x)

)1/n1
q(x)1−1/n1

]
, (8)

with 1/n1 = (1+α1)/2 and proj [·] is the KL-projection onto
F . Since the Gaussian distributions in F have diagonal co-
variance matrices, computing proj [h(x)] means computing the
mean and covariance matrix of h(x), and returning a Gaussian
with the same mean and a diagonal covariance matrix whose
diagonal elements match those of the covariance of the density
h(x). Note that if α1 = −1, Eq. (6) reduces to applying
MFVB to the tilted distribution p̃1(x) ∝ f(y|x)q\1(x). In this
case, qnew(x) has the same mean as p̃1(x) and the diagonal
of its covariance matrix is the inverse of the main diagonal of
the precision matrix of p̃1(x). Computing the projection in (8)
is the main difficult task in EP and power EP. However, since
the likelihood and q(x) are Gaussian here, this can be done
effectively via Monte Carlo sampling (see next paragraph).
Once qnew(x) is computed, the updated q1(x) is obtained
using q1(x) ∝ qnew(x)/q0(x) (if no damping is used).
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2) Update of q0(x): q0(x) is updated by solving

qnew(x) = argmin
q∈F

Dα0
(f(x)q\0(x)||q(x)), (9)

with q\0(x) = q(x)/q0(x) ∝ q1(x), and by setting q0(x) ∝
qnew(x)/q1(x). Damping the updates of q1(x) and q0(x), is
possible with EP and α−EP (e.g., see [5], [15]). This strategy
generally slows down the convergence but makes the updates
more stable.

B. Selection of the divergence parameters

The α−EP framework allows the practionner to choose the
parameters (α0, α1), which can in principle be different. Dif-
ferent options can be investigated but a trade-off must be found
between quality of the final estimates, computational cost of
each update and overall stability of the algorithm (whose
convergence is not guaranteed). As discussed in [16], small
(i.e., negative) values of α lead to exclusive divergences which
tend to capture well one of the modes of the distributions while
large values of α lead to more inclusive divergences such that
q(x) tends to also cover the tails of p(x) when minimizing
(7) w.r.t. q(x). In the context of this paper, were q0(x), q1(x)
and therefore q(x) have diagonal covariance matrices, we can
explore efficiently various values of (α0, α1). Eq. (9) can be
minimized analytically and easily for α0 = 1 since the prior
is fully factorized and composed of MoG2 or BG distributions
(see [15]). For other values of α0, solving Eq. (9) is harder
and not as scalable, thus we fix α0 = 1.

For α1, we have much more flexibility since, for α1 ̸= −1,

f̃1(x) ∝
(
f(y|x)q\1(x)

)1/n1
q(x)1−1/n1 (10)

is Gaussian, with mean and covariance matrix (µ,S) such that
S−1 =

ATΣ−1A

n1
+

D−1
0

n1
+

(n1 − 1)D−1

n1

S−1µ =
Σ−1ATy

n1
+

D−1
0 m0 + (n1 − 1)D−1m

n1
.

(11)

Computing µ can be done without inverting S−1, e.g. using
preconditioned gradient descent since left-multiplying by S−1

is generally fast. As mentioned above, only diag(S) (not the
full matrix covariance matrix S) is required to compute (8).
Given the structure of S−1, it is easy to approximate diag(S)
via Monte Carlo sampling [17], [18], even in high dimensions,
and this is the approach adopted here. Although α1 can in
principle take any value, α1 > 1 does not lead to stable updates
and we restrict our analysis to α1 ∈ [−1, 1]. In the remainder
of the paper, we use the notation α−EPα1

to highlight which
α1 value is used. Note that α−EP1 correspond to the EP
algorithm described in [15], and that solving (6) involves
the same cost ∀α1 > −1 (which is usually higher than for
α1 = −1 (VB)).

IV. EXPERIMENTS

A. 2D Gaussian likelihood

Prior to investigating large problems, we first visualise the
results of the different methods discussed in this paper using a

Fig. 1. Examples of variational approximation of 2D posterior using MVFB
and α−EP. The ellipses show the approximate regions of high posterior
density. The red ellipses are obtained from Gaussian densities which have the
same means and covariance matrices as the true posteriors. In these examples,
all methods correctly identify the primary modes of the posterior distributions
and provide similar posterior mean estimates.

simple example with N = M = 2. We set A and Σ such that
(ATΣ−1A)−1 = [0.2, 0.255; 0.255; 0.4], the ground truth x0

is set to x0 = [1.2, 0]T . We then consider two prior models
1) a MoG2 prior, the same for both components of x, with

(m1, s
2
1) = (0, 0.01) and (m2, s

2
2) = (0, 10) and the

prior weight of the first Gaussian distribution is set to
0.70 to promote small values.

2) a BG prior, the same for both components of x, with
(m2, s

2
2) = (0, 10) and the prior weight of the Dirac

delta function is set to 0.70.
For these two priors, exact computation of the posterior is
tractable, and it is possible to apply the MFVB method from
[14] for comparison. Figure 1 depicts the regions of high
density approximated by the different methods for the two sce-
narios. The level sets represent the actual posterior distribution,
although on the right-hand side, a smoothed representation of
the exact posterior is displayed (the true posterior is a mixture
of degenerated densities). This figure illustrates how MFVB
and more generally the use of exclusive divergences tend to
underestimate posterior variances, even in small dimensions.
The α−EP−1 results are not displayed here as they are very
similar to those of MFVB, and by increasing α1, the estimated
marginal variances increase and become closer to the actual
marginal variances of the true posterior.

B. Estimation performance

We now investigate the estimation of a sparse vector of
length N = 100 using M ∈ {50; 100; 500} noisy observations.
The matrix A is constructed by multiplying an M × N and
an N × N random matrix with i.i.d. elements drawn for a
standard Gaussian distribution. Moreover, Σ = 0.01IM and
the ground truth x0 is drawn from a product of independent
and identical BG priors with p(xi = 0) = 0.73 and where the
slab is Gaussian with mean zero and variance equal to 10. The
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Algorithm M=5N M=N M=N/2

MFVB BG 0.0060(0.016) 0.12(0.22) 0.74(0.0008)

MoG2 0.0001(4.10−5) 0.0005(0.0001) 1.81(0.60)

α−EP−1
BG 0.0001(4.10−5) 0.0005(0.0001) 1.34(0.36)

MoG2 0.0001(4.10−5) 0.0005(0.0001) 1.34(0.36)

α−EP−0.5
BG 0.0085(0.004) 0.0098(0.024) 0.60(0.0031)
MoG2 0.0085(0.004) 0.0098(0.024) 0.60(0.0031)

α−EP0
BG 0.0014(0.0018) 0.0010(0.0026) 0.52(0.012)
MoG2 0.0014(0.0018) 0.0010(0.0026) 0.52(0.012)

α−EP0.5
BG 0.0001(0.0001) 0.0005(0.0001) 0.49(0.015)
MoG2 0.0001(0.0001) 0.0005(0.0001) 0.49(0.015)

EP BG 0.0060(0.016) 0.12(0.22) 0.74(0.0008)

MoG2 0.0001(4.10−5) 0.0005(0.0001) 1.81(0.60)

TABLE I
RMSE OF THE APPROXIMATE POSTERIOR MEAN (THE NUMBERS IN
BRACKETS INDICATE THE STANDARD DEVIATIONS OVER 30 NOISE

REALIZATIONS).

experiments are repeated with 30 noise realizations. For all the
α−EP results, the diagonals of S in (11) are estimated from
1000 independent Monte Carlo samples. Table IV-B reports
the root mean squared errors between the ground truth x0

and the approximate MMSE estimates obtained by different
approximate methods using as prior i) the BG prior used to
generate x0 and ii) a MoG2 prior with the variance of the
spike equal to 0.01 (and the other parameters as for the true
prior). Note that the results of α−EP1 are the same as those
of EP in our experiments and are thus not duplicated. When
the problem is not severely ill-posed (e.g., when M = 5N ),
MFVB and EP tend to provide RMSEs lower than α−EP,
which also present larger standard deviations. When the likeli-
hood becomes less informative due to M < N α−EP provides
slightly smaller RMSEs than MFVB and EP. Moreover, α−EP
tends to provide similar estimates if based on the BG or MoG2
prior. We believe the variations of α−EP are partly due to
convergence issues as the algorithm requires damping to be
stable. While EP also often needs to be damped, it seems
to be less sensitive than α−EP in the examples considered
here. In addition to the RMSE of the approximate posterior
mean, we also visualize the marginal variances estimated by
the different methods. Fig. 2 shows examples of estimated
variances for M = 500. As in Section IV-A, we observe that
EP provides the largest marginal variances, expected to be
closer to the actual marginal variances.

Fig. 2. Example of approximate marginal variances estimated by MFVB,
α−EP and EP with the MoG2 prior and M = 500.

C. Image deconvolution

Finally, to illustrate how α−EP can be used for very
large inverse problems, we investigate an image deconvolution

Fig. 3. Example of deconvolution results using EP and a MoG2 prior for
BSNR=30dB (top) and BSNR=20dB (bottom).

problem using a 512× 512 pixels image (cameraman). In this
example x represents the wavelet coefficients of the unknown
image, i.e., A = BW−1, where B represent a 2D convolution
and W is an invertible 2D wavelet transform (Daubechies 5
with 3 levels here). The coefficients of the coarse approxima-
tion are assigned the same weakly informative Gaussian prior
and the detail coefficients are assigned the same MoG2 prior
with the two means set to zeros, the variances set as (1; 5.103)
and the weight of the spike is set as 0.70. These prior
parameters have not been optimized and a full comparison
with alternative approaches is left to future work due to
space constraints. The results discussed here are primarily
intended to illustrate the potential of the methods for high-
dimensional inference. Using x̂ = m and D estimated by
α−EP, it is possible to approximate the unknown image using
W−1m and its covariance matrix using W−1DW−T . Again,
to avoid the manipulation of large matrices, we only estimate
its diagonal for visualization purposes, using Monte Carlo
sampling [17]. An example of deconvolution is depicted in
Fig. 3, where the observed image is blurred using a 9×9 pixels
blur and blurred signal-to-noise ratios of 30dB and 20dB. We
can observe that the marginal variances generally decrease as
the BSNR increases (the data become less informative) and the
uncertainties are larger in textured regions and around edges.

V. CONCLUSION

In this paper, we compared several variational inference
methods for small and then large scale sparse linear inverse
problems with Gaussian likelihood. We illustrated how α−EP
can stand as a trade off between VB and EP methods, in
terms of the marginal variance estimation. In the examples
considered, it seems EP was the most attractive method
but these initial results should be nuanced. All the methods
considered here rely on fully factorized approximations, which
may not be a reasonable constraint for some inverse problems.
Adopting different, problem-specific, covariance constraints
can favor the use of specific α−divergences. For instance, low-
rankness can be incorporated easily using FFVB [13]. On the
other hand, EP does not require the posterior distribution to
be differentiable
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pectation propagation in linear regression models with spike-and-slab
priors,” Machine Learning, vol. 99, no. 3, pp. 437–487, 2015.

[16] T. Minka, “Divergence measures and message passing,” Microsoft
Research Ltd., Tech. Rep. MSR-TR-2005-173, December 2005.

[17] G. Papandreou and A. L. Yuille, “Gaussian sampling by local perturba-
tions,” in Proceedings of the 23rd International Conference on Neural
Information Processing Systems - Volume 2, ser. NIPS’10. Red Hook,
NY, USA: Curran Associates Inc., 2010, p. 1858–1866.

[18] P. Sidén, F. Lindgren, D. Bolin, and M. Villani, “Efficient covariance
approximations for large sparse precision matrices,” Journal of Compu-
tational and Graphical Statistics, vol. 27, no. 4, pp. 898–909, 2018.

2195


