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ABSTRACT

This paper concerns the problem of recovering an unknown
but rank-r signal from quadratic measurements. We for-
mulate the recovery problem as two-stage nonconvex opti-
mization approach where an efficient adaptive accelerated
gradient-like iterative refinement starting from a careful ini-
tialization. Moreover, an efficient initial scheme is proposed
for this problem. The average relative error of our initial-
ization estimator reduces exponentially as the oversampling
ratio grows, which can also boost the performance of existing
two-stage approach for rank-r matrix recovery from vector
measurements. Experimental results not only clearly demon-
strate the superiority of introduced initialization estimator
but also show the advantages of our adaptive accelerated
gradient-like approach in terms of both sample complexity
and computational complexity.

Index Terms— Adaptive accelerated gradient-like method,
low-rank matrix recovery, nonconvex optimization, quadratic
sensing.

1. INTRODUCTION

In a variety of applications including coherence retrieval in
optical imaging [1] and quantum state tomography [2], co-
variance sketching of high-dimensional streaming data [3],
one faces to recover a rank-r matrix X ∈ Cn×r from a set of
scalar quadratic measurements. This problem is also known
as quadratic sensing [4] and the scalar measurements are
given as

yi = ∥aH
i X∥2 + ei, i = 1, ...,m (1)

where {ai ∈ Cn, i ≤ i ≤ m} is a set of (known) sensing
vectors, ei ∈ R for i = 1, ...,m represents the additive noise.
Let the rank r matrix X ∈ Cn×r be fixed and our interest
is to recover X from a set of scalar quadratic measurements,
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i.e.,

find X ∈ Cn×r

s.t yi = aH
i XXHai + ei, i = 1, ...,m (2)

The problem (2) is equivalent in recovering a rank-r positive
semidefinite matrix M = XXH ∈ Cn×n from m scalar
quadratic measurements

find M ∈ Cn×n

s.t yi = aH
i Mai + ei, i = 1, ...,m

rank(M) ≤ r. (3)

Among the most well-established methods based on
semidefinite relaxation (e.g., [5], [6].) can solve the (3) with
optimal sample complexity under Gaussian measurement.
However, these methods often lift the original n-dimensional
natural parameter space to a higher dimensional n × n space
and cast the problem (3) as a semidefinite programming,
which is, in general, computationally expensive to deal with
large-scale data.

To avoid this drawback, many approaches focus on alter-
native formulations in the natural parameter space and solve
the nonconvex optimization problem. In [7], the vanilla gra-
dient descent, following a tailored spectral initialization, is
proved for solving the rank-r minimization problem from a
nonconvex quadratic loss function. A variational Bayesian
learning approach is proposed for low rank phase retrieval [8]
with unknown rank information. An exponential-type gradi-
ent descent algorithm is proposed in [9] to minimize the non-
convex quadratic loss function, which is similar to the trun-
cation rule in [10] to suppress samples that heavily influence
the search direction. But their method consider the noncon-
vex intensity-based quadratic loss function and the rank r
matrix is assumed in real space, which is continuously dif-
ferentiable. Recently, vanilla Gradient Descent is used for
quadratic sensing under amplitude-based loss function [11].
Similar nonconvex method is proved to converge the ground
truth (up to global ambiguity) with near-optimal sample com-
plexity for rank-one measurements [12]. However, the con-
ventional spectral initialization can’t provide a high quality
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initial guess [13, 14], which leads to all these nonconvex op-
timization methods using conventional spectral initialization
may not show their best performance.

To overcome these limitations, we utilize the amplitude-
based loss function inspired by the importance of better mod-
els in nonconvex phase retrieval and further develop an effi-
cient and powerful nonconvex optimization-based method for
the quadratic sensing problem.

2. QUADRATIC SENSING PROBLEM

Following the least-square criterion, the problem of (2) can
be naturally recast as the ensuing empirical loss minimization,
and a nonconvex optimization based iterative method can be
derived in the natural parameter space:

X ← arg min
U∈Cn×r

L(U) ≜
1

m

m∑
i=1

ℓ(U ; yi) (4)

where the loss function L(U) is selected based on the data
measurements and the noise model. Similar to [15], [16], [8],
the amplitude-based loss function is utilized for this paper as
follows:

L(U) ≜
1

m

m∑
i=1

(√
yi − ∥aH

i U∥2
)2
, ∀ i ∈ {1, ...,m} (5)

However, the objective function L(U) is nonconvex.
Minimizing nonconvex objectives is NP-hard in general due
to existence of many stationary points [17]. Fortunately, the
empirical loss often enjoys benign geometry in a small local
region surrounding the global optimum and specially, starting
with a carefully designed initial guess that is in a basin of
attraction of U , successive refinement is effected based upon
a sequence of gradient-like iterations without leaving the
basin. This two-stage approach often leads to very efficient
algorithms that run in time proportional given data dimen-
sion [4]. Select a learning rate µ, start with an initial point
U (0) ∈ Cn×r, and generate a sequence {U (k+1) ⊆ Cn×r}
via the iteration

U (k+1) = U (k) − µ(k)

m

∑
i∈H(k+1)

∇ℓi(U (k); yi) (6)

where U (k) denotes the estimate returned by the algorithm
at the k-th iteration, µ(k) > 0 is the step size, ∇ℓi(U (k); yi)
is the (generalized) gradient-like of loss function L(U), and
H(k+1) represents certain selected index set effecting the per-
iteration. If L(U) is a mapping from Cn to R, it is not holo-
morphic and hence not complex-differentiable. However, it is
viewed as a gradient based on Wirtinger derivatives in [18],
and the Wirtinger derivative of L(U ; yi, ε) is computed as

∇L(U ; yi) :=
2

m

m∑
i=1

(∥aH
i U∥2 −

√
yi)×

aia
H
i U

∥aH
i U∥2

(7)

(7) is also similar to the (generalized) gradient-like method
derived from [19] as

∇ℓi(U (k); yi) =
(
∥aH

i U (k)∥2 −
√
yi

) aia
H
i U

∥aH
i U∥2

(8)

3. INITIALIZATION

A key to the success of general nonconvex optimization
method is an effective initialization. The quality of the start
point for the nonconvex optimization method may signifi-
cantly affect the performance of iterative searching process.
If one can find a high quality start point that is in a local
basin of attraction of ground truth X , an iterative refine-
ment procedure would find the wanted solution of (4). This
two-stage approach is remarkably efficient under Gaussian
measurements starting with a carefully-designed initializa-
tion estimators and step-size rules. In [7], a tailored spectral
initialization is proposed for providing the initial guess for
nonconvex optimization, which exploit the principal subspace
of a surrogate matrix constructed by the measurements and
sensing vectors to provide an initialization. An argument sim-
ilar to phase retrieval can be applied to quadratic sensing in
(4), recognizing that the expectation of the surrogate matrix
as

D =
1

2m

m∑
i=1

yiaia
H
i (9)

and under the Gaussian design, the surrogate matrix D can
be viewed as the sample average of m i.i.d. random rank-one
matrices {yiaia

H
i }mi=1 [12]. When the number of samples

m is large, this sample average should be “close”to its ex-
pectation. The spectral method then proceeds by computing
Z ∈ Cn×r (which consists of the top-r eigenvectors of D ),
and a diagonal matrix Λ whose i-th diagonal value is given as

Λii = λi − λ, i = 1, ..r (10)

where λ = λr+1 [7] ( But in [12], λ is suggested as
1
m

∑m
i=1 yi provides a more accurate estimate.). The ini-

tial guess is then set as

U0 = ZΛ1/2 (11)

3.1. Modified Spectral Initialization

In [9], a truncation rule similar to [10] is introduced to spec-
tral initialization for rank-r quadratic sensing problem, where
a high-quality initial guess scheme is provided and just need
O(nr) measurements. Motivated by the success of pre-
processing function [13, 14, 20] used in phase retrieval. We
explored similar tricks to the quadratic sensing problem and
the pre-processing function T (·) used in this paper derived
by [21]. It should be noted that the other excellent pre-
processing functions [20, 22] also work efficiently.

T (yi) ≜
(
c1 − exp

(
− ypi /ξ

2
))

, i ∈ I (12)
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where p ∈ (0, 1] (we choose p = 1 through the paper) and the
constant c1 is defined as

c1 ←

{√
3
3 if X ∈ Rn×r,
1
2 if X ∈ Cn×r.

(13)

and the normalized constant is

ξ ←
√

1

|I|
∑
i∈I

yi (14)

The positive value of pre-processing function T (yi), i ∈
{1,m} is used to extract useful information from the large
values of {yi}mi=1. Small measurements yi, i ∈ {1,m} is
regarded as “weak” signal [23] in which the sensing vec-
tors ai, i ∈ {1,m} is nearly orthogonal with the targeted
ground truth X . Evidently, pre-processing of the “weak ”sig-
nal T (yi) may have a large negative part which is can be con-
sidered as penalizing the “weak” measurements and hence
preserves the information of targeted ground truth X . Simi-
lar to the spectral initialization (9), the new surrogate matrix
is defined as

D̃ ≜
1

2m

m∑
i=1

T (yi)aia
H
i (15)

and under the Gaussian design, the expectation of surrogate
matrix D̃ can be viewed as,

E[D̃] = 2X̃X̃H + ∥X̃∥2F In (16)

The spectral method then proceeds by computing Z̃ ∈ Cn×r,
which are the normalized eigenvectors corresponding to the r
largest eigenvalues of D̃, and a diagonal matrix Λ̃ whose i-th
diagonal value is given as

Λ̃ii = λ̃i − λ̃, i = 1, ..r (17)

where λ̃ = 1
m

∑m
i=1 yi. Therefore, the new initial guess is

given by

U0 = Z̃Λ̃1/2 (18)

4. OPTIMIZATION ALGORITHMS

Although the gradient-like iterative algorithm is computa-
tional efficiency, the convergence rate of gradient-like method
is O(1/k), which means that O(k) iterations are required to
reach a wanted O(1/k) accuracy of solution. Recently, Nes-
terov’s accelerated scheme is proved that can escape saddle
points and has faster convergence rate than gradient descent
in the nonconvex setting [24]. Inspired by [25], [26], we in-
troduce a fast adaptive restart gradient-like approach starting
with our proposed initialization to update (6).

The (k + 1)-th iteration of fast adaptive restart gradient-
like method is updated as

U (k+1) =U (k) − µ(k)

m

∑
i∈{m}

∇ℓi(U (k); yi) (19)

V k+1 =Uk+1 +
ηk − 1

ηk+1
(Uk+1 −Uk)

+
ηk

ηk+1
(Uk+1 − V k) (20)

with

ηk+1 =


√

4(ηk)2+1+1

2 , k ≤ T − 1√
8(ηk)2+1+1

2 , k = T
(21)

and η1 is set to be 1.
Unlike gradient-like method, accelerated schemes are not

guaranteed to be monotone in the loss function. Restarting the
accelerated algorithm from the current iteration is a common
technique is applied in accelerated approaches. We would
suggest an elegant approach named adaptive restart technique
[26] to implement Algorithm 1. The restarting operation is
activated whenever

L(U (k+1)) > L(U (k)) (22)

For clarity, we summarize our algorithm as Algorithm 1.

Algorithm 1 Adaptive Accelerated Gradient Descent Method
(AAGD)
Input: Sensing vectors {ai}mi=1, data y, learning rate µ, the
maximum number of iterations T .

1. Initialization: U0 is obtained from modified spectral
initialization.

2. Let V 1 = U1 = U0, η
1 = 1, k = 1.

3. while (not meet the stop criterion) do

(a) Update Uk+1 according to (19).

(b) Update V k+1 from (20) and ηk+1 from (21).

4. end while

Output: X̂ = UT+1.

5. NUMERICAL SIMULATIONS

In this section, we conduct a number of experiments to evalu-
ate the performance of introduced modified spectral initializa-
tion (MSI) and a fast adaptive restart gradient-like approach
(AAGD) starting with our proposed MSI initialization. Our
proposed methods are compared with existing state-of-the-
art (nonconvex) algorithms for the quadratic sensing problem.
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For fairness, all procedures are implemented with their sug-
gested parameter values. We take a Gaussian sensing vectors
ai ∼ CN (0, In) ≜ N (0, In/2) + jN (0, In/2), 1 ≤ i ≤ m
and generate a rank r matrix X ∈ Cn×r from an independent
standard multivariate normal distribution and where Xi,i ∼
CN (0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ r. All the experiments are
implemented in Matlab 2016b and carried out on a computer
equipped with Intel Core i5 3.4GHz CPU and 8GB RAM. All
simulated results reported in this paper were averaged over
100 Monte Carlo (MC) realizations. The performance evalu-
ation metric used relative error defined as:

RE← min
O∈O(r)

∥XO − X̂∥F
∥X∥F

=
∥XΣV H − X̂∥F

∥X∥F
(23)

where XΣV H is the singular value decomposition of XHX̂ ,
X̂ is the estimate of targeted rank-r matrix. Fig. 1 shows
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Fig. 1: Average relative error for X ∈ Cn×r with n =
50, r = 4 under the complex Gaussian model and m/n vary-
ing within the range [1.6, 8].

that the average relative error of the modified spectral initial-
ization (MSI) is compared with truncated spectral initializa-
tion (TSI) [9], spectral initialization (SI) [7], [12], [11] for
X ∈ Cn×r with n = 50, r = 4 under the complex Gaus-
sian model and m/nr varying within the range [1.6, 8]. We
observe that our introduced modified spectral initialization
yields a lower average relative error and significantly out-
performs the existing spectral initialization methods as the
oversampling ratio m/nr grows.

Fig. 2 depicts the empirical success rate of our AAGD
method, compared with GD method [7], [12], [11], and Alt-
Min method [11] versus varying oversampling ratio m/nr ∈
[1.8, 3.2] for X ∈ Cn×r with n = 50 and r = 4 under the
complex Gaussian model, where a success trial is claimed if
the estimate has a relative error less than 10−5. Note that it
was shown in [9] that the exponential-type GD method em-
pirically on a par with the GD method [7] and assume the real
Gaussian model. Therefore, the Exponential-type GD method
was not included for comparison. For boosting the perfor-
mance of compared method, all the methods start with the
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Fig. 2: Empirical success rate versus oversampling ratio
m/nr for X ∈ Cn×r with n = 50, r = 4.

proposed MSI initialization. Our proposed AAGD method
can significantly improve the performance of Vanilla Gradi-
ent Descent used in [7], [12], [11].
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Fig. 3: The NMSE with respect to iterations for X ∈ Cn×r

with n = 50, r = 4 and m = 6n.

Fig. 3 further compares the convergence speed of vari-
ous schemes in terms of the number of iterations to produce
solutions of a given accuracy. Evidently, AAGD method con-
verge faster than vanilla gradient descent method used in [7],
[12], [11] and AltMin method [11], and all methods test under
the complex Gaussian model with X ∈ Cn×r with n = 50,
r = 4 and m = 6n.

6. CONCLUSION

In this paper, we propose an efficient initialization estima-
tor and an adaptive accelerated gradient-like approach start-
ing with proposed initialization for solving quadratic sensing
problem. The average relative error of our initialization esti-
mator reduces exponentially as the oversampling ratio grows,
which can boost the performance of existing two-stage ap-
proach for rank-r matrix recovery from vector measurements.
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Experimental results not only clearly demonstrate the superi-
ority of introduced initialization estimator but also show the
advantages of our adaptive accelerated gradient-like approach
in terms of both sample complexity and computational com-
plexity.
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