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Abstract—Predicting future observations of a system is a clas-
sical task in signal processing. However the effects of nonlinear
dynamics, unobserved variables and observation noise make
this task difficult in practice. We propose a data-driven non-
parametric approach to model systems with latent dynamics
using state-space reconstruction and Gaussian processes. With
this approach, both latent states and future observations can be
predicted together. When applicable, this method is efficient even
with short time series. We demonstrate the method on synthetic
data and then showcase its efficacy and accuracy in predicting
brain dynamics on a data set obtained from traumatic brain
injury patients.

Index Terms—state space reconstruction, nonlinear dynamics,
Gaussian processes, traumatic brain injury, attractors

I. INTRODUCTION

Physical systems are often described by systems of
interacting states or modes. In many systems, these
interactions are deterministic and so the evolution of the
system in time is not random. Even in the absence of
stochastic effects and external influences on the system,
deterministic systems can exhibit complicated phenomena
such as bifurcations, chaos, and phase transitions [1], [5].
These phenomena can complicate modeling, but even worse
is that in many applications not all state variables of a system
are observable. In this case, latent variable models are required
to model the dynamics. Latent variable models generally
invoke complicated tools for inference such as variational
approximations which may be costly to train [3], [17]. Thus,
there remains an appeal in low complexity approaches to
modeling latent state spaces.

Possibly the simplest approach to latent state modeling
is provided by state space reconstruction (SSR) [4], which
is sometimes called attractor reconstruction in the nonlinear
dynamics literature [11], [21] or delay embedding within
the neuroscience community [12], [22]. SSR allows an
experimenter to construct a portrait of the latent state space
that generated an observed signal. If the system contains an
attractor, a distinguished geometric structure in the state space
that attracts nearby trajectories, then SSR will reconstruct
the attractor in the latent space. The conditions for this
reconstruction were first given by Floris Takens when the
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attractor is a compact smooth manifold [21], but there have
been several generalizations of Takens’ work to systems with
strange attractors and fractal structures [4], [16]. Although not
all systems have attractors, the presence of an attractor can
be exploited for many difficult scientific tasks, including the
analysis of neurological activity [2] and causal discovery in
ecological systems [20].

States in an attractor remain inside the attractor for all future
times [19], and so one may use the reconstructed attractor as a
proxy for the latent state space [18]. To learn the dynamics on
the reconstructed attractor, we propose to use Gaussian process
regression (GPR). Existing Gaussian process (GP) approaches
to modeling latent dynamics rely on learning a mapping into
the latent space [3], [8], [10], [15], [17], [24], but SSR provides
easy to implement and compelling alternative to other latent
variable models.

Our contribution in this work is a non-parametric and
data-driven approach to predicting latent states of nonlinear
systems by employing GPR to model the dynamics on the
reconstructed latent states. Under this approach, we show that
predicting latent states and future observations can be done
concurrently. We argue that GPR has numerous advantages,
especially for signals with short or noisy observation windows.

II. PROBLEM FORMULATION

The typical discrete-time state-space model consists of a
vector-valued latent state xn, an observation signal yn and
mathematical relationships that describe how they evolve in
time. Abstractly, we may write

xn+1 = F (xn), (1)
yn = h(xn), (2)

where xn ∈ Rd, yn ∈ R, and F and h are smooth functions.
The traditional state-space model includes additive noise in the
equations, but we exclude the noise while we are developing
the theory for our approach.

An attractor is a subset A ⊂ Rd of the state space that
will attract and trap nearby states [19]. Given an observation
signal yn whose corresponding latent state vectors xn reside
in an attractor A, SSR can reconstruct the latent attractor by
concatenating delayed observations as follows.

We first fix positive integer parameters Q and τ , which
are called the embedding dimension and embedding delay,
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Fig. 1. Three dimensional SSR results for a Lorenz system, which is defined
in (9). (A) The Lorenz attractor in the latent state space. (B) Shadow manifold
when τ = 1. Since adjacent samples in time are highly correlated, the shadow
manifold is compressed to a line. (C) Shadow manifold when τ = 5. The
shape of the Lorenz attractor can be recognized as a nonlinear transformation
of the original in (A). (D) Shadow manifold when τ = 100. The Lorenz
system is chaotic and large τ results in very complicated embeddings.

respectively. We then define the Q-dimensional SSR vector
by

my
n =

[
yn−(Q−1)τ · · · yn−τ yn

]
(3)

for any n ≥ 1 + (Q − 1)τ . When we choose Q to be
large enough, each SSR vector my

n represents a point on
the reconstructed attractor. If we choose Q to satisfy Q >
2 dim(A), then reconstruction is mathematically guaranteed
[16], although for many systems smaller Q will suffice. The
parameter τ is used to tune the quality of the reconstruction
by controlling the correlation between coordinates in the
SSR vector. The set of all points my

n is called the shadow
manifold, denoted by My . In Fig. 1, we visualize several
three-dimensional reconstructions of a Lorenz attractor to
show how the parameter τ influences the result.

The mathematical justification for SSR is given by Takens’
theorem [21], which asserts that the mapping in (3) provides
a diffeomorphism1 between the latent attractor A and the
shadow manifold My for most observation functions h in
(2). A probabilistic version of Takens’ theorem says that if we
randomly choose the observation function, then we reconstruct
the attractor with probability 1 [16]. The practical result here
is that there is a diffeomorphism D such that D(xn) = my

n

for all xn inside the attractor.

1A diffeomorphism is a differentiable transformation with a differentiable
inverse transformation.

SSR will reconstruct the basic topological and differential
properties of an attractor, but it also permits us to model
the latent dynamics as trajectories on the shadow manifold.
Using the diffeomorphism D and the function F from (1),
we may define a function F̃ on My by the rule F̃ (m) =
D(F (D−1(m))). This map reconstructs the latent dynamics
on the shadow manifold, i.e.

F̃ (my
n) = D(F (xn)) = D(xn+1) = my

n+1. (4)

Since the last coordinate of my
n is yn, learning the function

F̃ implies we can forecast the observation signal.
In general, to model F̃ we would need to model a

vector-valued function. However, if we instead model the τ -th
iterate of the function F̃ ,

F̃ τ (my
n) = F̃ (· · · F̃ (my

n))︸ ︷︷ ︸
τ times

= my
n+τ , (5)

then we only need to learn to predict yn+τ ,

F̃ τ (my
n) = F̃ τ

([
yn−(Q−1)τ · · · yn−τ yn

])
(6)

=
[
yn−(Q−2)τ · · · yn+τ

]

=

my
n


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 yn+τ

 ,
where the second equality follows from (5). Thus, if we learn
a function f such that

yn+τ = f(my
n), (7)

then we can reconstruct the latent dynamics.
By learning the function F̃ , we can both predict the

observation signal as well as predict latent states. If it
is acceptable to downsample by τ to do prediction, then
the modeling problem becomes computationally inexpensive.
Although my

n and xn can be numerically quite different
quantities, for practical purposes my

n is a useful proxy for
the latent state.

Since Takens’ theorem assumes a noiseless system, we
omitted noise from the state update (1) and the observation
equation (2) while developing the theory. There exist stochastic
generalizations of Takens’ theorem [18], but they are technical
and beyond the scope of this work. However, in the stochastic
case one may obtain a probabilistic version of (7) [18].

III. PROPOSED SOLUTION

A. Gaussian process regression
To model the dynamics of the latent state, we propose to use

Gaussian process regression (GPR) [14] to fit the function f in
(7). Abstractly, GPR fits a function f to a set of inputs xn and
outputs yn such that yn = f(xn). GPR supposes a Gaussian
process prior over the space of functions, which means that
for any set of input points x1, ...,xn,x∗, the corresponding
output points have a Gaussian distribution:

(y1, ..., yn, y∗) ∼ N (0,K),
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where the covariance Kij = kθ(xi,xj) is specified by a kernel
function kθ with parameter vector θ. For a point x∗ which
we want to know f(x∗), we simply compute the conditional
expected value

f̂(x∗) = E(y∗|y1, ...yn) = k>∗K
−1y,

where k∗ and y are vectors in Rn defined by (k∗)i =
kθ(x∗,xi) and yi = yi. Training the GPR predictor f̂
usually means we optimize the value of θ as to maximize the
likelihood of the observed data set. GPR is non-parametric,
robust to noise and efficient with small sample sizes [14].

GPR can also provide a probabilistic prediction by
considering p(y∗|y1, ..., yn), which is a Gaussian distribution,
and from this we may compute a 95% confidence interval
around any estimate. This confidence interval may model our
uncertainty due to perturbations in the latent state. Accounting
for observation noise could be accomplished by incorporating
denoising into SSR, as in [16], but we do not perform
denoising in this paper.

B. Latent state prediction

We will assume in this section that there exists a latent
attractor which may be reconstructed by SSR. Checking this
assumption is nontrivial [21], and the problem of detecting
attractors is left for future work.

Before training the GPR predictor, one must also learn the
parameters Q and τ used in SSR. There are several possible
options, but we provide a heuristic approach. We first select τ
by use of an autocorrelation function where τ is taken to be
the first lag in which the autocorrelation function drops below
0.5. Next, we select the embedding dimension Q using the
false-nearest-neighbors approach of [9]. A false neighborhood
is a pair of points my

s ,m
y
t that are nearest neighbors in

space but not time; i.e., my
s is the nearest neighbor to my

t

in our recorded data set, but s 6= t ± 1. In false nearest
neighborhoods, we iteratively increase Q until the number of
false neighborhoods is below 5%. With these considerations
in mind, we outline a procedure to perform τ -step latent state
prediction in Algorithm 1.

Algorithm 1 τ -step Latent State Prediction
1: Input: Observation signal y1, ..., yN
2: Normalize the signal yn
3: Compute the autocorrelation function ryy(k) of y
4: τ = min {k > 0; ryy(k) < 0.5}
5: Select Q using false-nearest-neighbors
6: Mrc = yr+cτ for r = 1, ..., N −Qτ and c = 1, ..., Q− 1
7: Yr = yr+Qτ for r = 1, ..., N −Qτ
8: Train a GPR to predict each Yr given Mr:

9: for each yt+τ to be predicted, do
10: my

t :=
[
yt−(Q−1)τ · · · yt

]
11: ŷt+τ := GPR(my

t )
12: m̂y

t+τ :=
[
yt−(Q−2)τ · · · yt ŷt+τ

]
13: end for

IV. RESULTS

We considered a number of explicit examples to test
our approach. In each example, the GPR model used a
Gaussian kernel function with a linear basis function [14].
We compared our method to other SSR-based predictors of
the observation signal from ecology and finance. The first
method used simplex projection to make predictions [23].
The second method was the Chaos-SVM predictor [7]. We
also considered a nonlinear autoregressive model (NARX)
produced by a neural network. The NARX model used the
same input dimension as the SSR models, but had unit delays.
We considered other neural predictors, including recurrent
and long short-term memory networks (LSTM) [6], but their
performance was generally similar to the NARX model. For
each system, we normalized the signals before processing. We
defined the signal-to-noise ratio (SNR) as 20 log10(Ps/Pn)
where Ps and Pn are the signal and noise powers, respectively.

A. Oscillator system
If a signal is a superposition of K sinusoids with random

frequencies, then its latent attractor is a K-dimensional torus
[5]. One way to produce such a signal is to observe multiple
oscillating latent systems. If xt ∈ R2, then the differential
equation

ẋt =

[
0 −f
f 0

]
xt

has the solution xt = [cos(ft), sin(ft)]>. Therefore,
sinusoidal signals may be interpreted as state trajectories in
some state space. If we now observe a signal that is a function
of multiple sinusoids, we may interpret it as an observation of
a state-space composed of oscillators. Let us observe

yt = p (2 sin(f1t) + sin(f2t) + sin(f3t)) + wt, (8)

where p(x) = −0.01x4 + 0.3x2 − x is a polynomial used to
add nonlinearity. Since the signal observes three oscillators,
the system’s attractor is three-dimensional and we need Q=7
dimensions or less to embed it. White Gaussian noise (WGN)
wt is added to p(·) such that the SNR is 20 dB.

In the simulations, we set f1, f2, f3 to
√

1/30, 1/3,
√
5/3.

Each predictor is trained on the initial 100 samples, and
then sequentially validated on an additional 400 samples. The
results are shown in Fig. 2.

B. Lorenz system
We observe a Lorenz system [19] through the x1-coordinate

ẋ1 = a(x2 − x1) (9)
ẋ2 = x1(c− x3)− x1
ẋ3 = x1x2 − bx3
yt = x1,t + wt

where (a, b, c) = (10, 8/3, 28). We simulated the model using
a Runge-Kutta method and observed the process with sampling
period 0.05. We add WGN wt to the observation such that the
SNR is 20 dB. We use the initial 250 samples for training,
and we performed a 7-step prediction on an additional 900
samples, shown in Fig. 3.
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Fig. 2. Four-step prediction result for the oscillator system. Our procedure
chose τ = 4 and Q = 6 for SSR. (A) Some of the predictions made by each
model. We also show the 95% confidence interval of the GPR predictions. (B)
We zoom in on the boxed region in (A) to see the predictions more clearly.
(C) Cumulative root mean squared error (CRMSE) for each point predictor,
which is defined to be CRMSE(T ) =

√
1
T

∑T
t=1(ŷt − yt)2. The limit of

CRMSE as T →∞ is the root-mean-squared error (RMSE) of each predictor,
which is shown in Table 1.

Fig. 3. Seven-step prediction results for the Lorenz system. Our method
selected τ = 7 and Q = 3 for SSR. (A) A portion of the observation
window showing predictions and the observed signal, similar to Fig. 2. (B)
We zoom in on the boxed region in (A) to see the predictions more clearly.
(C) CRMSE plots for each predictor.

C. Brain Electrophysiological Signal

We applied the predictors to electroencephalography (EEG)
signals recorded from comatose traumatic brain injury patients
at Stony Brook University Hospital. The EEG signals were
recorded from the scalp with a 18 contact standard 10-20
system and a sampling frequency of 256 Hz. We identified
a minimum of forty minutes of resting data for each patient
with minimal sedation and artifact. Before the analysis,
we preprocessed the EEG recordings by screening for
artifacts, bipolar re-referencing, mean subtraction, bandpass
filtering (0.5-30 Hz), down-sampling, and detrending using a
Savitzky-Golay filter [13].

In Fig. 4, we show the results of a 10-step prediction using
each of the four predictors. We successfully reconstructed
the underlying attractor supporting the bulk of the temporal
evolution of these brain dynamics, evident from the accurate

Fig. 4. Prediction result for the EEG signal. (A) Shadow manifold of the
training data set. Our method selected τ = 10 and Q = 5 for SSR. (B)
Latent trajectory predicted by the proposed method. The shadow manifold
produced by the predicted latent states resembles the manifold learned during
training. (C) Out-of-sample predictions of the EEG signal. We show each of
the four predictors under study as well as the GPR 95% confidence interval.
The width of a grid square represents the 10-step prediction interval. The plot
is zoomed to examine one portion of the predictions. (D) We zoom in on the
boxed region in (C) to see the predictions more clearly. (E) CRMSE plots for
each predictor.

prediction of EEG values compared to the observations.

V. DISCUSSION

In each system, every estimator made reasonable predictions
most of the time. For synthetic data, the NARX model
typically performed worse than the other predictors, indicating
that SSR, viewed as feature selection, can be valuable to
improve prediction accuracy. This intuitively makes sense,
since the NARX model implicitly performs SSR with τ = 1,
and optimizing τ allows us to better visualize the latent
attractor (Fig. 1). We anecdotally found that these results were
consistent as we decreased the observation SNR, but we did
not include a figure for this.

We may also highlight the connection to autoregressive
models here. Our results suggest that a nonlinear
autoregressive model can implicitly perform SSR to
reconstruct latent structure, and GPR provides a competitive
and flexible tool for modeling the latent dynamics of the
reconstructed latent states. The techniques that we used
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for selecting SSR parameters as well as our selected GPR
model were all somewhat standard, but this indicates that
an awareness of the presence of a latent attractor may be
exploited for making more accurate models without invoking
complicated techniques.

Model Oscillator Lorenz EEG

GPR 0.481 0.221 0.616
Chaos-SVM 0.787 0.225 0.712
Simplex 0.734 0.304 0.697
Nonlinear ARX 1.174 0.356 0.729

TABLE I
FINAL ROOT-MEAN-SQUARED ERROR (RMSE) FOR EACH MODEL AND
SYSTEM. FOR EACH OF THE THREE SYSTEMS, THE GPR PREDICTORS

YIELDED THE LOWEST PREDICTION ERROR.

Analysis of the EEG signal result is more challenging
because we do not know the ground truth. Namely, we do not
know if there is truly a latent attractor. In viewing the SSR
result we can visually suspect that there is structure that our
predictor may exploit. In Fig. 4, we show the latent states both
from the predictions as well the training data. Since the GPR
predictor can accurately model the dynamics of the observed
EEG signal, we decide that the learned shadow manifold is
a decent proxy for the latent system. While this provides
some evidence for the existence of a low dimensional attractor
in the neural state-space, additional analyses are required to
make any statements of scientific value. Additionally, not all
features of the signals could be predicted by the method, which
indicates that the latent attractor is not the only information
being recorded by the observation signal. A full discussion of
the dynamical and neurological significance of our result is
beyond the scope of this paper.

VI. CONCLUSIONS

In this work we detailed the SSR approach to reconstructing
latent states, and we showed that GPR is a competitive
and effective tool for building a dynamical model on the
reconstructed state-space. The effectiveness of this approach
relies on the nontrivial assumption that there are attractors
in the latent state-space. We will discuss the detection of
attractors in future work.
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