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Abstract—Despite the growing interest in
many fields, spatio-temporal (ST) interpolation
remains challenging. Given ST nonstationary
data distributed sparsely and irregularly over
space, our objective is to obtain an equidistant
representation of the region of interest (ROI).
For this reason, an equidistant grid is defined
within the ROI, where the available time series
data are arranged, and the time series of the
unobserved points are interpolated. Aiming to
maintain the interpretability of the whole pro-
cess while offering flexibility and fast execution,
this work presents a ST interpolation frame-
work which combines a statistical technique with
deep learning. Our framework is generic and
not confined to a specific application, which also
provides the prediction confidence. To evalu-
ate its validity, this framework is applied to
ultrasound nondestructive testing (UT) data as
an example. After the training with synthetic
UT data sets, our framework is shown to yield
accurate predictions when applied to measured
UT data.

Index Terms—Spatio-temporal interpolation,
Geostatistics, Kriging, Deep learning, Ultra-
sound NDT, Manual measurements

I. Introduction
There has been growing interest to analyze and

predict spatio-temporal (ST) data in many fields
and applications, such as meteorology [1], earth
science [2], medical imaging [3], among others.
Although different types of ST processes exist,
this study concerns the ST processes which are
nonstationary in both space and time with non-
separable covariance functions.

One example for such processes is ultrasonic test-
ing (UT). UT is a nondestructive evaluation (NDE)
method to localize the flaws within test objects
by insonifying the objects under test. Although
the test object may be time invariant, UT data
exhibit dynamic temporal behavior and thus can be
regarded as ST nonstationary. Furthermore, their
temporal behavior depends on the time of flight
between the sensor and scatterers, making UT data
non-separable in ST domain.
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To improve the inspection quality of manual UT,
an assistance system called SmartInspect is being
developed [4]. With SmartInspect, the inspection
area is discretized into equidistant grid points. The
measured signals, each of which is a time series, are
then assigned to their nearest grid points and sub-
sequently postprocessed. Since the data is collected
manually, it is sparsely and irregularly sampled in
space, impairing the reconstruction quality. As a
countermeasure interpolation has been shown to be
beneficial for postprocessing [5].

In order to incorporate an interpolation pro-
cess into SmartInspect, the following requirements
should be satisfied. It must be (a) capable of
capturing dynamic temporal behavior, (b) robust
against sparse and irregular sampling and (c) fast
enough for on-site execution. Moreover, it is prefer-
able to maintain the interpretability of the whole
process and to be able to quantify the prediction
confidence.

However, handling ST nonstationary and non-
separable data still remains a challenging task
[1, 6]. Kriging, a classical interpolation technique
originating from the geostatistical field, is essen-
tially a minimum mean squared error (MMSE)
predictor. With the proper statistical modeling,
Kriging is well known to be the best linear unbiased
predictor. As a byproduct it can also provide the
prediction confidence. Yet, to properly capture the
ST statistics we should take into account the joint
dependency of the space and time domains. This
easily leads to large dimensionality of the sample
covariance matrix, often inhibiting the use of Krig-
ing for ST data [7].

Our previous work demonstrates that an autoen-
coder model can predict unknown UT signals from
randomly sampled measurements in their neighbor-
hood [5]. Yet, this method is sensitive to the change
in measurement settings such as the measurement
duration or the sampling period. Moreover, as it is
based solely on DNNs, it lacks the interpretability,
which may limit its application. For interpolating
irregularly sampled meteorological data, the au-
thors of [1] propose to decompose the ST data into
temporally referenced basis functions and spatial
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coefficients. While the temporal basis is determined
via principal component analysis (PCA), the spa-
tial coefficients are estimated using DNNs, preserv-
ing the interpretability. However, it still requires
a priori knowledge of the model order, which is
unrealistic for many applications.

Another approach for ST decomposition is to
transform ST data into other domains [6]. By
transforming it into space-frequency (SF) domain,
the temporal dependency of ST data can be decor-
related. This results in a significant reduction in
the dimensionality of the sample covariance matrix,
making Kriging feasible. By utilizing the knowledge
of the distribution of each Fourier coefficient, the
spatial statistics in SF domain can be estimated
parametrically [8]. Nevertheless, in many scenarios
such a priori knowledge may not be available, or
the distribution of the signal Fourier coefficients
cannot be well modeled.

Motivated by the work of [7], in this study
we propose the Deep Learning aided SF Kriging
(DLSFK), where full length time series data are
predicted based on their neighborhood measure-
ments. With DLSFK, interpolation is performed
via MMSE prediction in SF domain [7], whereas the
spatial statistics of SF domain are estimated non-
parametrically using a DNN to accommodate their
frequency-dependent variability. Our approach is
similar to [1], where we use Fourier transform
instead of PCA as temporal basis functions.

DLSFK has the following advantages. First, it
does not require any knowledge regarding the dis-
tribution of the signal Foruier coefficients, making
it generic and applicable to various signals. Second,
the same network can be used for all frequen-
cies, providing the flexibility for the measurement
setup. Third, as a class of DNN-aided inference
[9], DLSFK preserves the interpretability of the
interpolation process. Fourth, the prediction con-
fidence can be estimated. Lastly, the network can
be trained with a synthetic data set.

II. Spatio-Temporal Data and Process
Modeling in Space-Frequency Domain

A. Spatio-Temporal Data
In this work, we consider a ST process which is

observed within a spatial region of interest (ROI)
Ds ⊂ Rd and an observational time Dt ⊂ R0+. Al-
though the actual ST process may be continuous in
space and time, we assume that the positional and
temporal information associated to the observa-
tions is limited due to a finite precision of measur-
ing instruments, such as an optical tracking system
or a signal recorder. This follows an assumption
that Ds and Dt are finite sets of equidistant points
in Rd and R0+, respectively, i.e. regular lattices.
The data collected on lattices are denoted as lattice
data [6].

A time series data for t ∈ Dt at a position s ∈
Ds is modeled as a sum of bandlimited signals and
measurement noise as

x(s, t) =
K∑

k=1
ak(s, t) + n(s, t)

= a(s, t) + n(s, t)
(1)

Here, a(·) denote the signal of interest, and n(·) is
regarded as Gaussian noise with a finite variance,
independent of a(·). The quantity K is the signal
model order, which may or may not be known.
In SF domain, the Fourier coefficients of (1) are
expressed as

X(s, ω) :=
∫

Dt

x(s, t)e−jωt

= A(s, ω) + N(s, ω),
(2)

where ω = 2πf , and A(·) and N(·) are the SF
spectra of the signal and the noise, respectively.

Based on these settings, the objective of this
work is set as follows. Suppose Ds consists of L
equidistant points over a region in Rd. Within
the same region, several measurements are taken
at irregularly spaced locations. The measurement
positions are available with a limited precision,
which are arranged onto the nearest points of Ds

and denoted as a set of distinct positions SN =
{s1, s2, . . . sN } ⊂ Ds. At each position of SN a
time series data of length M is recorded, resulting
in the collection of measurements represented as a
matrix XN = [x1 x2 · · · xN ] ∈ RM×N . Given the
data set XN and the measurement positions SN ,
our goal is to predict the missing (L − N) time
series data XL−N ∈ RM×(L−N).

B. Spatial Statistics Based Process Modeling
For the sake of simplicity, in this section we

consider a scenario where an unknown time series
data of the position s0 ∈ {Ds \ SN } is to be
predicted based on the observations in its neigh-
borhood. Instead of predicting the time series data
directly, prediction is carried out in SF domain,
since Fourier coefficients of different frequencies are
uncorrelated and can be predicted separately [7].

Although (2) is deterministic, our information
regarding its behavior within Ds is limited due
to inadequate sample size. A common strategy to
account for those uncertainties is to model such
a process as a random process [6]. Since it is
complex-valued, in this work we call the process
model of (2) a complex-valued spatial random field
(CSRF), which is denoted as {X̃(s, ω) : s ∈ Ds}.
With the CSRF process modeling, measurements
are generally considered as a single realization of
the process, denoted with small letters as x̃(s, ω)
in this work.

Let us consider the prediction of the Fourier
coefficient of a frequency ωm = 2π m

M fS with
M and fS being the number of frequency bins
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and the sampling frequency, respectively. In gen-
eral, a linear prediction of the Fourier coefficient
X̃m(s0) := X̃(s0, ωm) can be expressed as

ˆ̃Xm(s0) = wT
m(s0) · x̃m, (3)

where wm ∈ CN is the weight vector, and x̃m =
[x̃m(s1), x̃m(s2), . . . , x̃m(sN )]T ∈ CN is a vector
representation of the Fourier coefficients of the
available samples. To achieve a linear MMSE pre-
dictor, the optimal weights of (3) can be attained
using frequency variograms (FVs) [7]. FVs are based
on the assumption of intrinsic stationarity (IS). Let
the spatial incremental process of the CSRF be
Ỹ [h](s, ω) = X̃(s, ω) − X̃(s + h, ω), with h ∈ Rd

being a spatial separation, typically called a lag.
Under the assumption of IS, the incremental pro-
cess Ỹ [h](s, ω) is assumed to be zero-mean and
shift invariant, allowing the actual process to be
non-stationary [6].

Based on these assumptions, a FV is defined as

2γX̃(h, ω) := Var
{

Ỹ [h](s, ω)
}

, (4)

which is the expected value of the periodogram
of the incremental process Ỹ [h](s, ω) [8]. Upon
interpolation (3), a FV (4) for each frequency is to
be estimated based on the sample spatial statistics.
The FV of x̃m is defined as [8]

gx̃(hij , ω) = 1
N(hij)

∑
si−sj=hij

|x̃(si, ω) − x̃(sj , ω)|2 ,

(5)
where N(hij) is the number of location pairs whose
lag is hij . In this study, we call (5) a sample FV.

III. Method: Data Driven Frequency
Variogram Estimation

A. Problem Fromulation for DLSFK
As described in Section II-A, our ST data are

lattice data, consisting of N vector-valued samples
and L − N unknown vectors to be predicted. Pre-
dictions of those time series data are carried out in
SF domain. Hereafter, the ROI Ds is assumed to
be small enough to ensure IS within Ds.

The whole interpolation process is depicted in
Figure 1 (a). Utilizing the orthogonality of Fourier
kernels, interpolation is performed individually for
each frequency of interest. As shown in Figure 1
(b), the actual interpolation procedure for a single
frequency is divided into three parts. First, the
sample FV of the measurements XN are computed.
Second, the FV of the ROI Ds are estimated based
on the sample FV. Lastly, the Fourier coefficients of
the unknown time series data XL−N are predicted
via (3), where the weights are determined based on
the estimated FV.

For accurately predict the unobserved signals, es-
timation of FVs plays a crucial role. With Ds being
regular lattices, the available lags within Ds form a

A

A

XN

DLSFK(ω0)

DLSFK(ω1)
...

DLSFK(ωm)
...

DLSFK(ωM−1)

+ X̂itp

(a)

XN

F(ωm)

Samp. FV (5)

FV est.

MMSE

F−1(ωm)

DLSFK

(b)

Figure 1: Block diagram of DLSFK, the proposed
framework for spatio-temporal interpolation: (a) entire
framework and (b) space-frequency domain interpola-
tion for a single frequency ωm. The prediction process
(DLSFK) is highlighted in (b). Here, XN ∈ RM×N and
X̂itp ∈ RM×L are the measurement data, i.e. samples,
and the interpolated data, respectively. The notation
F and F−1 respectively represent the forward and the
inverse Fourier transform.

finite set with Nh known elements. As a result, for
each frequency we only need the FV values for these
particular lags. This implies that we do not need
to estimate a continuous function (4). Instead, only
the estimate of a vector γX̃ ∈ RNh

0+ is sufficient.
Understanding the implication of FVs is also

helpful to formulate the estimation problem. In the
same manner as the conventional variograms, the
structure of FVs represent the underlying spatial
statistics of SF domain. Specifically, if the values
of the ROI evolve over space, i.e. spatially cor-
related, the corresponding FV gradually increases
with lags. Contrarily, a FV converges very quickly,
if the values are not correlated. Furthermore, when
a frequency ωm is within the signal spectra, its
Fourier coefficients over Ds are highly spatially
correlated, whereas those of noise are not. This sug-
gests that the structure of a FV varies depending
on the frequency.

Based on these considerations, we formulate the
FV estimation problem as a regression problem
where the structure of a FV is modeled for each
frequency. To accommodate their frequency depen-
dence, the regression is performed nonparametri-
cally using a DNN. This allows us to estimate
FVs without restricting the signal type or requiring
a priori knowledge about the distribution of the
signal Fourier coefficients.

B. Network Architecture and Training for UT Ap-
plication

For estimating a FV of a single frequency ωm,
a DNN is designed, such that the same network
can be applied to all frequencies. As the network
inputs, two attributes are selected. One is the
distribution of the available lags within the samples
as a probability p(h|SN ) ∈ RNh

[0,1]. The other one is
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the sample FV of ωm (5) which is smoothed over
distance and normalized with its maximal value.
Considering that neighboring bins are similar in
their FV structures, the FVs of two neighboring
bins, namely ωm−1 and ωm+1, are also fed into
the network to provide further insights and reduce
the effect of the noise. The network outputs an
estimate of the normalized FV η̂ ∈ RNh

0+ , which is
subsequently denormalized. The selected network
is composed of a single 1D convolutional layer
followed by four dense layers. However, it has to
be highlighted that other architectures would also
be suitable for the proposed framework.

The training data are based solely on synthesized
data. Aligned to our scenario, UT data are modeled
as a sum of clean UT signals and measurement
noise. The clean UT signals are generated using
a delay-and-sum based forward model [5]. The
noise is modeled as additive white Gaussian noise,
whose SNR is selected based on our actual UT
measurements and set to 20 dB.

We first generate the groundtruth signals XL ∈
RM×L which are computed for all L grid points in
Ds. This follows random selection of the sampling
positions SN from L points in DS , and the mea-
surements XN ∈ RM×N are subsampled from XL

accordingly. The network is trained in a supervised
manner, where the network aims to minimize the
mean squared error between the normalized FV of
the groundtruth η ∈ RNh

0+ and the network output
η̂. To diversify the training data set, we vary the
number of the scatterers, i.e. K in (1), and their
positions, the center frequency and the bandwidth
of the UT pulse, and the number of samples N and
their spatial distribution.

IV. Numerical Results: Spatiotemporal
Batch Interpolation

The performance of DLSFK is numerically eval-
uated using a set of UT measurements as an ex-
ample. The measurements are obtained with an
automated UT measurement system. To mimic the
sampling density of manual inspections, this data
set is spatially subsampled, and the missing data
are interpolated afterwards.

A. Measurement Setup
The measurements are taken in contact mode,

where a single transducer is placed directly on the
object surface, transmitting an ultrasound pulse
and receiving the echoed signals. The test ob-
ject is made of steel, which has a flat surface
and is configured with several flat bottom holes.
These holes are regarded as flaws in the speci-
men. Scan positions are equally spaced with dx
= dy = 0.5 mm, which corresponds to 8.7 samples
per squared wavelength. As the region of interest
(ROI), a batch of 10 dx × 10 dy is chosen. The
depth of the ROI is also limited to the range

Table I: Measurement Parameter Values
Parameter Value/range

Specimen Material Steel
Dimension 200 × 140 × 90

(L × D × H) [mm]
ROI (Nx × Ny × Nz) 10 × 10 × 512

UT Probe Diameter 10 mm
Center frequency ≈ 4.0 MHz

Bandwidth (−6 dB) ≈ 2.6 MHz
Measurements Wavelength λ ≈ 1.475 mm

Spatial spacing 0.5 mm
Sampling frequency 80 MHz

between 69.62 mm and 88.5 mm, where we see the
echoes caused by the flaws. In the selected batch,
15 samples are randomly selected as illustrated in
Figure 2 (b), which is equivalent to 1.3 samples
per squared wavelength. The values of the mea-
surement parameters are summarized in Table I.

For this study, two interpolation techniques are
compared: inverse distance weighting (IDW) as
a benchmark and the proposed method, DLSFK.
IDW computes predictions by weighting the avail-
able samples inversely proportional to the distance
and is widely used for spatial interpolation tasks.

For interpolation, two more parameters are in-
troduced: the maximal neighboring range and the
minimal number of samples. The maximal neigh-
boring range sets the boundary from a prediction
point, such that the distanced samples are ex-
cluded for its prediction. This serves to maintain
the prediction accuracy and is set to

√
2

2 Nx dx =√
2

2 Ny dy ≈ 3.536 mm, which is the longest dis-
tance within a batch from its center. The minimal
number of samples is the lower bound of samples
to initiate FV estimation. Contrary to IDW which
can compute a prediction from only one sample,
DLSFK requires at least two samples within the
neighboring range for FV estimation. We empiri-
cally select five as minimal.

Note that a numerical comparison to other state
of the art methods is not feasible for our data set,
since [5] requires more samples than our scenario
and [1] requires a priori knowledge of the model
order (which would render the comparison unfair).
Moreover, the approach of [8] is not applicable,
as a parametric model of the Fourier coefficients
is required. The authors’ assumption of Normality
should be verified for the application.

B. Interpolation Results
Figure 2 and 3 show the obtained results in C-

Scan and A-Scan representations. Here, C-Scans,
which are computed by taking the maximum abso-
lute values along the temporal axis, are intended to
demonstrate the capability of capturing the overall
trend. On the other hand, the prediction accuracy
can be assessed by comparing the A-Scans with the
reference data.

In terms of both capturing the trend and predict-
ing missing measurements, the proposed method

2224



0

5

10

y
/

dy

(a)

0 5 100

5

10

x/ dx

y
/

dy

(c)

(b)

0

0.1

0.2

0.3

0.4

0 5 10
x/ dx

(d)

0

0.1

0.2

0.3

0.4

Figure 2: Spatio-temporal interpolation results of a
10 × 10 batch in C-Scan view. The coverage of the
samples is 15%, which is equivalent to 1.3 samples
per squred wavelength. The ground truth data are
subsampled and interpolated. (a) ground truth, (b)
subsampled data, (c) IDW interpolation and (d) inter-
polation results of the proposed method (DLSFK). The
white areas in (b) represents the missing measurements,
whereas those in (d) are the regions where no predic-
tions can be made due to the lack of neighboring scans.

outperforms IDW. IDW tends to average out over
the available samples, generating very similar re-
sults for two separated prediction positions. This
confirms its sensitivity to irregular sampling, which
is however inevitable in our UT scenario and
many other applications. On the contrary, DLSFK
demonstrates its robustness against clustering and
irregular sampling. Even for the position where the
variance is high due to a lack of samples, their
predictions are well representative compared to
that of IDW.

There are, yet, some points where no prediction
can be made due to a lack of samples within their
neighboring range. These points are whitened in
Figure 2 (c). In manual UT, such information along
with the estimated prediction confidence could pro-
vide a feedback to the operator, indicating which
region requires more measurements to increase the
inspection quality.

V. Summary
In this work, DLSFK, a deep learning aided in-

terpolation framework for spatio-temporal nonsta-
tionary data, is presented. Within DLSFK, interpo-
lation is performed in space-frequency (SF) domain
via the MMSE predictor, whereas the spatial statis-
tics in SF domain are estimated non-parametrically
using a DNN. This yields a fast, interpretable in-
terpolator that is agnostic to measurement parame-
ters such as measurement duration or the sampling
period. To evaluate its validity, ultrasonic testing
(UT) data are employed as an example. After the
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Figure 3: Predictions of a missing A-Scan at (x, y) =
(0 dx, 2 dy) via IDW (top) and the proposed method
(bottom).

training with synthetic UT data, DLSFK is applied
to actual UT measurements which are sparsely and
irregularly subsampled. DLSFK outperforms the
widely used inverse distance weighting, yielding
accurate predictions and exhibiting greater robust-
ness to heavy subsampling.
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