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Abstract—In this work, we study non-parametric estimation of
joint probabilities of a given set of discrete and continuous ran-
dom variables from their (empirically estimated) 2D marginals,
under the assumption that the distribution could be approxi-
mated by a mixture of product densities/mass functions. Estima-
tion of joint probability density function using semi-parametric
techniques such as Gaussian Mixture Models (GMMs) is widely
studied. However, they yield poor results when the underlying
densities are mixtures of various other families such as Laplacian,
generalized Gaussian, uniform, etc. Further, GMMs are not the
best choice to estimate distributions which are hybrid in nature,
i.e., when it contains both discrete and continuous components.
We present a novel approach for estimating the distribution using
ideas from dictionary representations in signal processing coupled
with low rank tensor decomposition. We create a dictionary of
various families of distributions by data inspection, and use
it to approximate each decomposed factor of the product in
the mixture. Our approach can naturally handle hybrid N -
dimensional distributions. We test our approach on a variety
of synthetic and real datasets to demonstrate its effectiveness
in terms of better classification and lower error rates, when
compared to state of the art estimators.

Index Terms—Statistical Learning, Tensor Decomposition, Dic-
tionary Representation, Probability Density Estimation

I. INTRODUCTION

Inferring probability density functions (PDFs) from data
is a fundamental problem in machine learning, statistics and
signal processing [1] [2] with applications in varied fields such
as conditional inference, samples generation, image recon-
struction and many more. The applicability of widely popular
methods like Gaussian mixture models (GMMs) are restricted
to the case of smooth multi-modal densities where every
mode is well approximated by Gaussians. Similar is the case
with non-parametric settings such as kernel density estimation
(KDE). Moreover, such techniques exhibit lower and lower
convergence rates as the data dimensionality increases. For
N -dimensional data, the convergence rate, in terms of the
integrated mean square error (IMSE), for the KDE is known
to be O(N− 4

N+4
s ) [3].

Recently, joint probability mass functions (PMFs) of dis-
crete or discretized random variables (RVs) have been rep-
resented as tensors – in fact low rank tensors, using the
fact that the different RVs are neither completely dependent
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nor completely independent [4]. There have been significant
developments in the estimation of joint PMFs from lower
dimesional marginals (eg, 3D marginals) using the Canonical
Polyadic Tensor Decompostion (CPD) using these low rank
constraints [4]. Along similar lines, the work in [5] uses non-
negative matrix factorization (NMF) techniques to estimate the
PMF from just pairwise (i.e. 2D) marginals. On the other hand,
ideas from tomography were incorporated into this tensor-
based framework in [6] for PMF reconstruction from just 1D
marginals. Extending these ideas to the continuous domain,
one can discretize the continuous RVs, use the aforemen-
tioned techniques for estimating cumulative interval measures
(CIMs), followed by an appropriate interpolation technique to
recover the joint PDF. For instance, [7] uses sinc interpolation
assuming that the underlying PDF is band-limited, in keeping
with the popular Shannon-Nyquist theorem. Under similar
assumptions, there also exists work in the Fourier domain
where CIM reconstruction techniques are applied to obtain the
‘characteristic tensor’ and the continuous PDF is then retrieved
using the inverse Fourier Transform [8].

In this work, we present a novel approach which combines
ideas from the CPD model for tensors and dictionary rep-
resentations, to reconstruct the joint PDF from just pairwise
(2D) marginals, as opposed to 3D marginals. The key idea is to
prepare a dictionary of 1D PDFs belonging to various families,
with parameters restricted to lie in a carefully chosen range, for
each component of the N -dimensional data. Reconstruction of
the N -dimensional PDF using such a dictionary helps us to
circumvent restrictive assumptions such as PDF smoothness
or band-limitedness as in previous methods. Furthermore, the
convergence rate for estimation of 2D marginals is superior to
that for 3D marginals used in [4].

II. BACKGROUND

A. Canonical Polyadic Decomposition(CPD) of Tensors

Any N -dimesional tensor T ∈ RI1×I2×...×IN admits a
decomposition in the form of the sum of F rank-1 tensors.
This is known as the CPD, and is given by:

T =

F∑
r=1

λ[r]A1[:, r] ◦A2[:, r] ◦ ....AN [:, r], (1)
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where F is the smallest number for which such decomposition
is possible, where for each n ∈ [N ], where [N ] ≜ [1, 2, ..., N ]
the matrix An ∈ RIn×F is called a mode factor matrix, ◦ de-
notes the outer product of vectors and λ[r] denotes the rth mix-
ing weight. For tensors that represent high-dimensional PMFs,
the above decomposition is applicable with the following
additional constraint: (1) ∀n ∈ [N ], r ∈ [F ], ∥An[; , r]∥1 = 1
with non-negative entries in the mode factor matrices, and
(2) ∥λ∥1 = 1 where λ is a vector of F non-negative mixing
weights. Recovering the PMF is equivalent to estimating these
mode factors and λ [4].

The above model can be viewed as a naive Bayes model
with the latent variable H that takes on F different values
such P (H = r) = λ[r] for all r ∈ [F ], and the outer product
of the mode factor can be viewed as a conditional probability
given H [4]. With this, the CPD model for the PDF of RV
X = (X1, X2, ..., XN ) ∈ RN can be formulated as:

T =

F∑
r=1

P (H = r)

n=N∏
n=1

P (Xn = in|H = r). (2)

B. Continuous RVs: PDF estimation

For the case of continuous RVs, consider an N -dimensional
RV X = {Xn}Nn=1, whose PDF is given by the following
mixture of multivariate distributions:

fX(x1, ...xN ) =

F∑
r=1

λ[r]fX|H(x1, ..., xN |H = r). (3)

If the RVs are independent given H , then each conditional
density can be represented by the product of 1D densities and
the above equation becomes:

fX(x1, ..., xN ) =

F∑
r=1

λ[r]

N∏
n=1

fXn|H(xn|H = r), (4)

which can be viewed as the continuous analog of the CPD
model for PMFs [7]. In this case, the problem of estimating
the PDF is equivalent to estimating these ‘continuous’ mode
factors and their mixing weights.

C. Joint PDF estimation from 3D marginals

The work in [7] exploits the above CPD of densities
which are conditionally independent to estimate the joint PDF
from the data. They propose to discretize each component
Xn of the N -dimensional variable into In intervals {∆i

n ≜
(di−1

n , din)}1≤i≤In and form the CIM tensor Z given by:

Z(i1, ..., iN ) = P (X1 ∈ ∆i1
1 , ..., XN ∈ ∆iN

N ) (5)

=

F∑
r=1

λ[r]

N∏
n=1

P (Xn ∈ ∆i
n|H = r), (6)

where P (Xn ∈ ∆i
n|H = r) are the CIMs of the corresponding

1D components of the RV. If the PDF/CDF of each component
in the product is band-limited, the CIMs can be estimated
using the PMF reconstruction techniques described in [4].
The reconstruction involves estimating the 3D marginals,

Zi,j,k = P (Xi, Xj , Xk), using standard histogramming and
then minimizing the following cost function:

min
{An}N

n=1,λ

∑
i

∑
j>i

∑
k>j

∥Zi,j,k − [λ,Ai,Aj ,Ak]∥2F

s.t. ∀n, r ∥An[:, r]∥1 = ∥λ∥1 = 1,An ⪰ 0,λ ⪰ 0, (7)

where ⪰ represents the element-wise inequality and
[λ,Ai,Aj ,Ak] ≜

∑F
r=1 λ[r]Ai[:, r]◦Aj [:, r]◦Ak[:, r]. After

obtaining the discretized samples of the PDFs, the technique in
[7] invokes the Shannon-Nyquist sampling theorem to use sinc
interpolation to produce the original joint PDF using Eqn. 1.
In [8], under similar band-limitedness of the density, a different
kind of approach is considered using the characteristic function
of the density, ΦX(ν) = E[ejν

TX ], where j ≜
√
−1. If

the true density is given by fX(x), then it can be well
approximated by truncating the Fourier series below:

f̂X(x) =

k1=K1∑
k1=−K1

...

kN=KN∑
kN=−KN

ΦX(k)e−2πjkTx. (8)

If we furthur impose the CPD model on it, the expression
for ΦX(k) becomes becomes similar to Eq. 2. where F
is the rank of the tensor. With enough samples {xm}, the
expectation can be reliably estimated using sample mean
Φ̂X(ν) = 1

M

∑M
m=1 e

jνTxm Minimizing a cost function
similar to Eqn.7 for the characteristic tensor Φ̂X(ν) followed
by inverse Fourier transform, yields fX(x).

D. Joint PMF estimation from 2D marginals

An interesting approach that employs Non-negative Matrix
Factorization (NMF) techniques [9] to estimate the mode
factors from 2D marginals was introduced in [5]. They es-
timate Zj,k via sample histogramming and obtain the mode
factors using the relation Zj,k = AjΛAk

T , where Λ is a
diagonal matrix with diagonal elements obtained from λ. If
the tensor rank F ≫ min(Ij , Ik), then NMF techniques cannot
be applied [10]. Therefore, the authors proposed to split the
indices of N variables into two sets and construct a matrix Z̃
by row and column concatenation using the indices in the two
sets (see [5, Eqn. 3]. Then Z̃ is decomposed as Z̃ = WHT

using the successive projection algorithm (SPA) [11]. The
mode factors are then extracted using the relations W =
[Al1 ,Al2 , ...,AlM ]T and HT = Λ[AlM+1

,AlM+2
, ...,AlN ],

where {l1, l2, ..., lM} and {lM+1, lM+2..., lN} are the two sets
of indices.

III. PROBLEM STATEMENT AND ALGORITHM

Let X ≜ (X1, X2, ..., XN ) be an N -d RV, each component
of which can be either continuous or discrete. Our aim is
to estimate fX(x) which follows the CPD model with rank
F for the continuous case, given sample values of the RV.
Let us further assume that each column of these “continuous
mode factors” fXn|H(xn|H = r) are convex combinations
of various densities from a given dictionary. Mathematically,
we have fXn|H(xn|H = r) = An[:, r] = DnBn[:, r],
1 ≤ r ≤ F , where Dn is a dictionary of continuous densities
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(or discrete PMFs in some cases) and Bn[:, r] ∈ RLn
+ ∪{0} is

the non-negative weight vector which sums to 1. Here Ln is
the number of different densities (number of columns) that are
present in the dictionary Dn. We will later see that keeping the
dictionary Dn separate for each component of the RV gives
us a lot of flexibility in dealing with RVs defined on disparate
domains. Then, the 2D PDFs Zj,k can be expressed in the
form Zj,k = DjBjΛBk

TDk
T which is straightforward to

derive by marginalizing along Xj and Xk, and replacing
each density in the product by its dictionary representation.
We discretize each component of the RV into In intervals
{∆i

n ≜ (di−1
n , din)}1≤i≤In and form the 2D PMF matrix Z̄j,k

given by:

Z̄j,k(ij , ik) = P (Xj ∈ ∆
ij
j , Xk ∈ ∆ik

k ) (9)

= D̄j [ij , :]BjΛBk
T D̄k[ik, :]

T ,

where the column-wise discretized form of a “continuous
tensor/matrix” Z is represented as Z̄. We can obtain an
estimate Ẑj,k of these 2D PMFs by standard histogramming of
the samples. It is emphasised here that we do not assume any
knowledge of the densities from which the data are generated.
For the purpose of estimation, all the dictionaries {Dn}Nn=1

are designed by inspecting the samples. We will elaborate
on this aspect in more detail in Sec.IV. Thus, our task is
to estimate the coefficients Λ,B1, ...,Bn. To this end, we
minimize the following cost function:

J({Bn}Nn=1,Λ) =
∑
j,j<k

∥Ẑj,k − D̄jBjΛBk
T D̄k

T ∥2F

(10)
s.t. ∀j, r, ∥Bj [:, r]∥1 = 1,Bj ⪰ 0, ∥diag(Λ)∥1 = 1,Λ ⪰ 0.

However, minimization via (say) a simple gradient descent
may not be feasible as the solution will not be identifiable for
cases when F > min(Lj , Lk), as argued in [5]. We propose
to do the following: (i) We minimize ∥Ẑj,k−D̄jT j,kD̄k

T ∥2F
for each pair of (j, k) via mirror descent to obtain T j,k ≜
BjΛBT

k . For mirror descent, closed-form updates can be
derived even with the simplex constraint on T j,k [12] [13].
(ii) Next, we construct the matrix T̃ from T j,k using the
concatenation approach described in [5, Eqn. 3] and determine
the matrices W and HT as outputs from function SPA(.)
implemented in [5]. The weight matrices, Bn and Λ can
now be identified as submatrices of W and HT . (iii) We
further refine our estimates for these weights by using mirror
descent on cost function in Eqn. 10. We name our algorithm
JUPAD: Joint density estimation Using Pairwise marginals
And Dictionaries.

The pseudo-code for the algorithm is presented in Alg.1,
where ηT , ηB and ηL are the learning rate hyper-parameters
chosen via cross-validation, ⊗ represents the Hadamard prod-
uct of two matrices, and vec(.) reshapes a matrix into vector
form.

Algorithm 1 Joint probability density estimation using pair-
wise marginals

1: Procedure: JUPAD
2: Obtain the estimate Ẑj,k for the 2D marginals Zj,k via

histogramming
3: for each pair (j, k), j < k do
4: Randomly initialize T j,k

5: while converged==false do
6: T j,k ← T j,k ⊗ exp(−ηT ∂(∥Ẑj,k−D̄jT j,kD̄

T
k ∥2

F )
∂T j,k

)

7: T j,k ← T j,k

∥vec(T j,k)∥1

8: end while
9: end for

10: Assemble T̃ from {T j,k} following [7, Eqn. 3].
11: {Bn}Nn=1, Λ← SPA(T̃ )
12: while converged==false do
13: for i=1 to N do
14: while converged==false do
15: Bn ← Bn ⊗ exp(−ηB ∂J

∂Bn
)

16: L1 normalize each column of Bn

17: end while
18: end for
19: while converged==false do
20: Λ← Λ⊗ exp(−ηL ∂J

∂Λ )
21: L1 normalize the diagonal of Λ
22: end while
23: end while

IV. NUMERICAL RESULTS

A. Synthetic Data

To test our algorithm, we created density functions as a
convex combinations of densities from a chosen dictionary.
The aim then was to reconstruct the density function from
samples of the underlying random variable. We drew sample
data from the synthetic density for various sample sizes (Ns)
and tested the accuracy of the algorithms by averaging the
absolute of log likelihood ratio between the estimated (f̂X(.))
and the known true PDF (fX(.)). We generated M ≜ 1000
test samples {zk}Mk=1 and used the following measure:

D(f̂X , fX) ≈ 1

M

M∑
k=1

| log(f̂X(zk)/fX(zk))|. (11)

Dictionary Construction: Notice that the marginalized distri-
bution for the nth component of the RV will be fXn

(xn) =
DnBnλ. This implies that by looking at the structure of
the 1D empirical histogram (obtained from sample values)
for each component, we can guess the families of distribu-
tions it might belong to. For example, the histogram of an
exponential RV will peak at zero and decrease exponentially,
that of a mixture of Laplacians will have distinct peaks at
the mean of each component with a heavy tail, etc. For the
parameters of the density families, we consider the range of
values for samples of that component, say [a, b]. Consider
that we wish to include Gaussians and Laplacians in our
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(a) Mixture of Laplacians (b) Mixture of Gaussians

(c) Mixture of Gaussians and Laplacians (d) RV with continuous and discrete components

Fig. 1: D(f̂X , fX) vs Number of samples (Ns) for JUPAD (our approach), CPD-3 [7] and GMM.

dictionaries. Then we can divide [a, b] into regular intervals,
and use the interval boundaries as the mean values for those
distributions, while the variance/shape factors are chosen such
that the densities with the mean values considered as described
here, are sufficiently separated. In other words, we want the
densities in our dictionary to completely cover the range of
the samples for that component. If the nth component of the
data is discrete, say label, categorical or integer data with Cn

states, we simply assign an identity matrix of size Cn × Cn

to D̄n. In this case the PMF of the marginal is given by:
fXn(xn = i) =

∑F
r=1 λ[r]Bn[i, r]. See appendix of [14] for

more details.
For all the experiments we compared our method with

the PDF estimation algorithm from [7] and the well-known
expectation maximization (EM) algorithm for GMM fitting
[15]. For EM-GMM, GMM-n represents the performance plot
for a GMM with n clusters. In all experiments, we started
with 5 clusters and went up to the point where increasing
the number of clusters resulted in ill-conditioned co-variance.
We refer to the algorithm in [7] as “CPD-3”. The technique
described in [8] was not included in the comparison results,
as for many toy experiments it produced results similar to
that of CPD-3 but was computationally very expensive for
larger number of samples. We generated densities belonging
to various families, as described below:
Mixture of Laplacians: In the first experiment, we chose the
dimension of the RV to be N = 5 and F = 10. Each column in
the mode factor is a mixture of 5 Laplacians. Thus, if L(µ, α)
denotes a Laplacian density with mean µ and shape factor
α, then each fXn|H(xn|H = r) =

∑5
i=1 wi,nrL(µi,nr, αi,nr)

where µi,nr ∼ U(−5, 5) and αi,nr ∼ U(1, 2). Here and for
all the following cases as well, the mixing weights wi,nr

and λ[r] ∼ U(0, 1) and then L1 normalized. Fig. 1a shows

D(f̂X , fX) vs number of samples(Ns). Clearly, our method
works better, be it in low or high sample regime, as Laplacian
densities are neither smooth nor band-limited.
Mixture of Gaussians: In the second experiment, we chose
N = 6 and F = 8. Each column in the mode factor
was chosen to be a mixture of 5 Gaussian densities. Thus,
fXn|H(xn|H = r) =

∑5
i=1 wi,nrN (µi,nr, σ

2
i,nr) where

µi,nr ∼ U(−5, 5) and σ2
i,nf ∼ U(1, 2). Fig. 1b shows us

that in lower sample regime, our algorithm is significantly
accurate whereas in high sample regime it is not far from
the best method. The reason for this performance anomaly
is due to the fact that there is a limit to the accuracy with
which the dictionary elements can represent a density due to
parameter discretization while the algorithm CPD-3 performs
sinc-interpolation which does not have any such restriction.
Mixture of Gaussians and Laplacians: In this experiment, we
chose N = 7 and F = 10. Each column in the first five
mode factors is a mixture of 5 Laplacians while mixture
of 5 Gaussian densities were used for next 5 mode factors.
Again µi,nr ∼ U(−5, 5) for both Gaussians and Laplacians,
αi,nr, σ

2
i,nr ∼ U(1, 2). Just like the first case, our method

performs significantly better than other algorithms across all
sample regimes, as seen in Fig. 1c.
Mixture of Continuous and Discrete RVs: For the last exper-
iment, we chose N = 4 and F = 8. This time the last
component in the RV was discrete with 10 states. As explained
earlier, the dictionary D̄4 was chosen to be a 10×10 identity
matrix. Each column of the last mode factor B4[:, r] was
generated from U(0, 1) and then L1 normalized. Densities of
the other mode factors were generated in the same way as for
experiment 2. We could not compare our method with the EM-
GMM algorithm because of its incapability to incorporate the
discrete components of the RV in its formulation. The results
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Fig. 2: Classification accuracy on various datasets

for this experiment are presented in Fig. 1d.

B. Real Data

In the real-world datasets where the true underlying PDF
is unknown, we tested our algorithm for a classification task
on various datasets in UCI repository1 – ‘Banknote Authen-
tication’ (5D), ‘Wifi Localization’ (8D), ‘Raisins’ (8D) and
‘Seeds’ (8D) datasets, and the KTH TIPS dataset 2. The classi-
fication results for different methods are summarized in Fig. 2.
The flexibility of our algorithm to adapt to hybrid distributions
and learn the joint probability of both discrete and continuous
components, endows us to estimate the joint density of the
form pX,Y (x, y), where X denotes the vector of class feature
(continuous) and Y is their label (discrete). As described
above, the dictionaries Dn for the features X are chosen from
the continuous distribution families after examining their em-
pirical marginals. For the label Y , Dn is set to identity matrix.
For detailed information on dictionary construction refer to
the appendix of [14]. The value of F was chosen on the basis
of accuracy on a validation set which was distinct from the
training and test sets. For all the experiments, the classification
task was performed by MAP estimation which assigns the
label ŷ = argmaxyp(y|x) = argmaxyp(x, y)/p(x). We ran
the CPD-3 algorithm as implemented by the authors. Treating
the label of each class as the latent variable, the classification
in CPD-3 is done using the MLE estimate: argmaxyp(x|y),
assuming the prior p(y) to be uniform, unlike our algorithm
where we learn the complete joint density p(x, y). We also
compared with GMM having full covariance (‘GMM-Full’)
and diagonal covariance matrices (‘GMM-Diag’).
UCI Dataset: Here we would like to bring out the generality
of our method to model discontinuities in the PDFs. For eg.,
if the histogram of some component shows abrupt change at
some value, then we can model this discontinuity by keeping
few uniform distributions spanning the range of the histogram
along with other densities. For most of the data, using a dic-
tionary consisting of Gaussians and Uniform densities yielded
satisfactory results (see Fig. 2).
KTH TIPS: This is a texture dataset which contains images of
size 200 × 200 of various textures. We chose three textures

1https://archive.ics.uci.edu/ml/datasets.php
2https://www.csc.kth.se/cvap/databases/kth-tips/download.html

- Orange Peel, Bread and Linen for our classification task.
We used two training images from each class and divided
them into 5× 5 patches creating 26D (patch size+label) data.
Thereafter, we normalized the pixel values so that all of them
lie in the range [0, 1]. Here, we used a dictionary consisting
of only Gaussians. For testing, we created a collage of 5× 5
patches of these textures and classified each patch again by
using MAP estimator. Our model performed remarkably well
for such a high-dimensional data and outperformed all the
other algorithms by a reasonable margin (see Fig. 2).

V. CONCLUSION AND FUTURE WORK

We integrated ideas from low-rank tensors CPD and dictio-
nary representation of signals to present a novel joint density
estimation technique. Our method is completely general and
can be applied to model mixtures of distributions coming
from different families. The numerical results demonstrate the
efficacy of our algorithm, especially in the low sample regime
where other methods under-perform. Some future work may
include a theoretical analysis of the proposed method w.r.t.
sample complexity. Our method can also be extended to dic-
tionary learning, where the dictionary elements are themselves
learned from the data without any manual inspection.
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