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Abstract—In this paper we present a deep neural network 

based text-to-speech system in the Serbian language, which 

converts generated acoustic features into a speech signal using 

the HiFi-GAN vocoder. The HiFi-GAN model was fine-tuned 

using an existing multi-speaker model trained on an English 

speech corpus. To overcome the problem of inadequate training 

data, we introduce a data generation technique based on a guided 

acoustic neural network, which attempts to minimize the mis-

match between data used in HiFi-GAN training and inference. 

The outputs of the acoustic network are intended to represent a 

trade-off between original feature trajectories and trajectories 

generated by the standard text-to-speech system. The results of 

subjective evaluation through listening tests show that the 

proposed system produces speech whose quality significantly 

surpasses the quality of speech generated by the best existing 

speech synthesis for Serbian, and that its MOS score is very close 

to the score given to natural speech. 

Keywords—generative adversarial networks, text-to-speech 

synthesis, vocoder.  

I. INTRODUCTION 

First widely used text-to-speech (TTS) systems were based 

on concatenation of speech segments from prerecorded speech 

corpora [1]. Although such systems could produce speech of 

good intelligibility, this approach also suffered from draw-

backs such as the presence of audible artifacts at concate-

nation points, the need for large speech corpora including an 

extremely great number of different phonetic contexts, as well 

as low flexibility as regards changing speech characteristics. 

All these drawbacks led to the development of new approach-

es based on learning from speech data rather than simply 

reproducing it. 

A majority of modern text-to-speech (TTS) systems con-

sists of three basic blocks: text analysis module, acoustic 

modelling module and a vocoder, connected sequentially [2]. 

The text analysis module converts raw text into a sequence of 

linguistic feature vectors. These features can be very simple 

and include only phoneme identities, but they can also be 

much more complex and include information related to part-

of-speech (POS) tags or intonation. The module for acoustic 

modelling learns to generate acoustic features from linguistic 

features by training on speech data, while the vocoder con-

verts obtained acoustic features to speech.  

Initially, the use of statistical modelling was restricted to 
creating models for converting linguistic features into acoustic 
ones. The most widely used statistical modelling approach was 
based on using Hidden Markov Models (HMM) and is usually 
referred to as HMM synthesis [3, 4]. Although such systems 
enable greater flexibility and produce output with no conca-
tenation artifacts, generated speech is muffled and buzzy. More 
recently, deep neural networks (DNN) took over the role of 
HMMs in statistical modelling, firstly in the form of feed-
forward networks [5] and later as recurrent neural networks [6, 
7]. Deep neural networks were able to generate more natural 
acoustic feature trajectories compared to HMMs, but the 
obtained features still needed to be converted to speech by a 
vocoder such as WORLD [8], which yielded suboptimal results 
due to inferior vocoder performance.   

With further development of neural networks and their tre-
mendous increase in popularity, they were soon used as main 
components of all building blocks of TTS systems, within 
architectures such as Deep Voice 1 and 2 [9, 10]. WaveNet, an 
architecture enabling direct prediction of speech samples from 
linguistic features, thus avoiding the need for vocoder usage, 
was also presented [11]. Systems such as Tacotron 1 [12] 
generate speech directly from the sequence of characters. Taco-
tron 1 does not generate speech samples directly, but generates 
spectrograms which are then converted to speech by the 
Griffin-Lim algorithm [13]. On the other hand, Tacotron 2 [14] 
uses WaveNet conditioned on mel-spectrograms to produce 
speech samples directly. Finally, the progress in DNN speech 
synthesis led to the development of fully end-to-end systems, 
which enable direct conversion from raw text to speech, 
without an acoustic model or a vocoder [15]. 

In this paper we introduce HiFi-GAN [16], a neural vo-
coder, into the framework of an existing DNN-based text-to-
speech synthesis system in the Serbian language [17]. We also 
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propose a special neural network, which we refer to as guided 
acoustic network, for generating training data for Serbian.  

The rest of the paper is organized as follows. Section 2 
presents an overview of the development of neural vocoders in 
general, including a more detailed presentation of the HiFi-
GAN vocoder. The proposed system and procedure for data 
preparation and training are described in Section 3. The experi-
ments are described in section 4 together with the results of 
subjective evaluation of the quality of synthesized speech. 
Finally, Section 5 concludes the paper and outlines the direct-
ions of future research.  

II. NEURAL VOCODERS 

WaveNet [11], the first neural vocoder, represents an auto-
regressive convolutional neural network which predicts speech 
samples from linguistic features. It has later been adapted in 
order to use spectrograms instead of linguistic features as 
inputs [9, 10]. The main drawback of vocoders obtained in 
such a way is inference time, since they are capable of pro-
ducing only a single speech sample in one forward pass. 
Architectures attempting to solve this problem are presented in 
[18, 19]. Another group of neural vocoders are flow-based 
vocoders [20, 21]. Models of this type estimate the conditional 
distribution of a speech signal conditioned on acoustic features 
by applying an invertible transformation, or flow, to a latent 
variable. The latent variable is generated by a simple proba-
bilistic distribution such as a Gaussian distribution with zero 
mean and unit variance. 

At the moment, generative adversarial networks (GAN) 
[22] are probably the most popular generative models, initially 
suggested for image generation, but successfully applied to 
other domains including audio and speech generation [23, 24, 
25]. Although vocoders of this type are computationally ef-
ficient, the quality of produced speech is lower compared to 
speech obtained by autoregressive and flow-based approaches. 
Further research eventually resulted in the HiFi-GAN vocoder 
[16], which is both computationally efficient and capable of 
producing speech of quality comparable to other types of 
neural vocoders. 

A. HiFi-GAN vocoder 

A generative adversarial network generally consists of two 
modules, a discriminator and a generator. The generator creates 
data with the same statistics as in the training set, while the 
discriminator tries to distinguish whether a given sample is real 
or generated. On the other hand, HiFi-GAN consists of one 
generator and two discriminators. The generator is a fully 
convolutional network which uses transposed convolutions and 
mel-spectrograms as inputs. Multi-period discriminator (MPD) 
consists of a number of sub-discriminators which use equi-
distant samples from input speech (each discriminator uses a 
different sampling period). In such a way, MPD attempts to 
detect periodic patterns in speech, assuming that it can be 
decomposed into sinusoidal signals. On the other hand, multi-
scale discriminator (MSD) uses consecutive samples from 
input speech. 

With such an architecture, the loss function represents a 
weighted sum of the following 3 terms: 

 GAN loss, in which standard GAN loss from [22] is 
replaced by least squares error function; 

 mel-spectrogram loss, which represents the L1 distance 
between mel-spectrograms extracted from original 
speech and generated speech respectively; 

 feature matching loss, which represents the distance 
between discriminator features obtained for original 
speech and generated speech. 

III. PROPOSED SYSTEM 

In this paper we introduce the HiFi-GAN vocoder in the 

pipeline of the Serbian DNN-based TTS system presented in 

[17]. Firstly, it should be noted that, since HiFi-GAN uses 

mel-spectrograms as inputs to produce speech samples, its 

“knowledge” is actually mostly language independent, which 

implies that mel-spectrograms extracted from Serbian speech 

could be used as inputs to a model trained for another 

language to produce output speech in Serbian. There could be 

some contexts which are specific for certain language, but 

these should be successfully learned during model tuning. 

With that in mind, in this research we utilize a universal model 

trained on a multi-speaker speech corpus in English and fine-

tune it to the voice of a Serbian speaker. However, if the HiFi-

GAN model is simply tuned using original speech in Serbian, 

this would produce suboptimal results in TTS inference stage. 

Namely, features produced by standard DNN TTS are 

smoothened so there would be a mismatch between data used 

in HiFi-GAN training and inference. On the other hand, it 

would also be possible to use a trained standard TTS in 

Serbian to generate the entire training database, but this would 

also introduce data inconsistency. Namely, HiFi-GAN model 

would be fine-tuned using features which are different than 

those used for training the universal base model. For this 

reason, we introduce a guided acoustic network for generation 

of training data. The outputs of this network should represent 

a trade-off between original feature trajectories and smoothed 

trajectories generated by the standard TTS system. This 

network is described in the following subsection.  

A.  Guided acoustic network 

The architecture of this network is based on the archi-

tecture of the network used for acoustic data prediction in 

standard TTS and is shown in Fig. 1. This network predicts 

acoustic features extracted by the vocoder: mel-generalized 

cepstral coefficients (MGC), fundamental frequency and 

aperiodicities. The principal component of the input to the 

network consists of linguistic features. These are extended by 

positional features, which provide information related to the 

position of the current frame in a phone. However, in order to 

provide additional information to the network, acoustic fea-

tures corresponding to the middle frame of the current phone 

are added to the input, which could be considered as 

additional guide for the network. The target features are mean-

var normalized. The linguistic part of the input is normalized 

using min-max normalization, while mid-phone acoustic 

features are also mean-var normalized. The information about 

phone durations is taken from the original corpus. 
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Once this network is trained, it is used to generate acoustic 

features for all the training data. In the inference process 

original phone durations are used as well as original mid-

phone features. These features are then fed to the vocoder and 

generated speech is used in extraction of mel-spectrograms fed 

to the input to the HiFi-GAN model during its training, as 

shown in Fig 2. Target speech in HiFi-GAN training is the 

original speech from the training database. 

B. Data augmentation 

Since the availability of speech data in Serbian is limited, 

we also resort to data augmentation techniques:   

 speech rate acceleration by a factor of up to 1.5% (cho-

sen randomly from a set of predefined values);   

 phase perturbation (FFT of original speech is calcu-

lated, its phase is changed, and the inverse FFT is then 

applied to the new values to obtain speech samples). 

It should be noted that data obtained in this way is used only 

in HiFi-GAN training. 

IV. EXPERIMENTAL RESULTS 

The speech samples used in subjective evaluation of the 

quality of speech synthesis were obtained based on a Serbian 

speech corpus of a female voice talent. The corpus was re-

corded in professional studio and contains around 3 hours of 

speech (including silent segments within utterances). For the 

purposes of the experiments all files were resampled to 22.05 

kHz. By applying data augmentation techniques, the content 

of the database was extended to approximately 25 hours of 

speech. 

The standard TTS system consists of one neural network 

for predicting durations represented as numbers of frames in 

HMM obtained state-level alignments and one network for 

predicting acoustic features used by the WORLD vocoder. 

Acoustic features include 30 MGCs, fundamental frequency 

and two aperiodicity coefficients. We also calculate the first 

and second order derivatives of the aforesaid features, i.e. 

delta features, as well as the information about the voicing of 

individual frames, which adds up to a target feature vector 

dimension of 100. Final acoustic features are obtained by 

applying Maximum Likelihood Parameter Generation 

algorithm [26] to the acoustic features and their derivatives. 

The inputs to both networks include 743 binary linguistic 

features, and the inputs to the acoustic network are extended 

by 9 positional features. Both networks have the same 

architecture: 3 feed-forward layers with 1,024 neurons which 

used the ReLU activation function and one LSTM layer with 

1024 neurons. 

The guided acoustic network has the same architecture as 

the standard acoustic network and uses the same target fea-

tures. When adding acoustic features to the inputs derivatives 

are not used.  As a starting HiFi-GAN model we use the uni-

versal model provided by the authors of original HiFi-GAN 

paper, which is trained on the LJSpeech dataset [27]. This 

corpus contains approximately 44 hours of speech. All the 

training parameters were the same as in [16] and the model 
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Fig 2. The HiFi-GAN training pipeline 
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was fine-tuned for additional 60,000 steps. The mel-spectro-

gram loss for the validation set is shown in Fig. 3. 

A. Subjective evaluation  

The quality of the generated speech is evaluated through 
two subjective tests. In both tests the input to the HiFi-GAN 
model were the mel-spectrograms extracted from the speech 
generated by the standard TTS.  Generated sentences were not 
used in either standard TTS or HiFi-GAN training. 

The first test was the preference test, and it consisted of 15 
tasks. In each task two utterances with the same lexical content 
were given, one generated by the standard TTS and the other 
generated by the HiFi-GAN based system. The subjects were 
required to select the utterance with better overall speech 
quality. The “no-preference” choice was also offered. The test 
was performed by 20 native Serbian speakers. The results 
presented in Fig. 4 show a clear preference for the HiFi-GAN 
based system. Namely, 71.67 % of utterances generated by the 
HiFi-GAN vocoder were preferred over utterances generated 
by WORLD. In only 12.66 % of cases WORLD generated files 
were considered as better and in 15.67 % of cases no prefe-
rence over either of the generated utterances was stated.   

The second test was a Mean Opinion Score (MOS) test. 
The subjects were presented with 30 utterances in a random 
order, whereof 10 original utterances from the corpus, as well 
as 10 corresponding utterances generated by HiFi-GAN and 
WORLD based systems each. The subjects were required to 
score each utterance with a mark from 1 to 5, where 5 repre-
sented natural speech, and 1 represented speech of very low 
quality. A total of 20 subjects took part in this test and the 
results are given in Fig. 5. It can be seen that the HiFi-GAN 
based system significantly outperforms the WORLD based 
system and that the MOS scores obtained by HiFi-GAN are 
very close to the ones obtained for natural speech (4.41 vs 
4.53).  These results are very similar to MOS values obtained 
in original HiFi-GAN paper [16] (4.36 vs 4.35). 

V.   CONCLUSION AND FUTURE WORK 

In this paper we present a high-quality TTS system for the 

Serbian language based on the usage of HiFi-GAN vocoder. 

We have shown that the HiFi-GAN vocoder can be success-

fully fine-tuned for the Serbian language using universal 

models trained for English. The quality of speech synthesized 

using HiFi-GAN has been shown to surpass the quality of 

speech synthesized using WORLD, achieving MOS grades 

that are quite close to those given to natural speech in the 

listening tests. 

As to the direction of our future research, by using simple 

data augmentation techniques described in the paper, we also 

intend to investigate the possibility of training models fine-

tuned to speakers with a very small quantity of available 

speech data as well as with a reduced number of linguistic 

features. This is expected to accelerate the process of speech 

data generation and the creation of new voices. 
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