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Abstract—We propose an efficient regression method which
is highly robust against outliers and stable even in the severely
noisy situations. The robustness here comes from the adoption
of the minimax concave loss, while the stability comes from
separate treatments of the outlier and noise by an introduction of
an auxiliary vector modeling the Gaussian noise. We present a
necessary and sufficient condition for convexity of the smooth
part of the entire cost under a certain assumption, where a
general model is used with its potential use for other applications
envisioned. We show that the proposed formulation can be solved
via reformulation by the forward-backward-based primal-dual
method under the convexity condition. The numerical examples
show the remarkable robustness of the proposed estimator under
highly noisy situations.

Index Terms—weakly convex function, minimax concave loss,
Moreau envelope, robust regression

I. INTRODUCTION

Outlier robustness is an inevitable issue of paramount im-
portance in modern signal processing including future wireless
communication systems as well as in machine learning [2, 3].
Its popularity stems from the fact that the typical squared-error
loss function has vulnerability in the presence of outliers. A
simple convex loss for robust regression is the least absolute
deviation (LAD), which is the ℓ1 norm of the estimation
residual [4]. The most prominent example of the convex loss
functions for robust regression is Huber’s loss. Despite its
mathematical tractability due to its convexity, Huber’s loss
has a severe limitation on its outlier robustness because it
increases linearly as the error increases above a certain range.
Another prominent example for robust regression is Tukey’s
biweight loss [5]. In contrast to Huber’s loss, Tukey’s biweight
loss is mathematically intractable due to its nonconvexity,
whereas it is highly robust against outliers due to the so-called
redescending property (see Section III-A). As such, Huber’s
and Tukey’s loss functions have an intrinsic tradeoff between
the robustness and mathematical tractability.

In this paper, we shed a new light on this tradeoff by
proposing an efficient regression method which is robust
against strong outliers and is stable under severe Gaussian
noise. The first ingredient of the proposed method is the
adoption of the minimax concave (MC) penalty [6, 7] to define
a loss function. This is the key for resolving the tradeoff
issue. While the MC loss is a nonconvex function, it is weakly
convex so that the overall cost function may become convex
by adding the quadratic penalty (which comes naturally from
our assumption about Gaussianity of the unknown vector to be
estimated). It is mathematically tractable owing to the overall
convexity, and it is highly robust against catastrophic outliers
because it saturates in analogy with Tukey’s biweight loss.

We then highlight another property of the MC penalty that
the derivative does not vanish at the origin. This property
suggests that the MC loss increases sharply when deviating
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slightly from the origin, and this may cause sensitivity to small
perturbations. As the second ingredient, we thus introduce
an auxiliary variable vector modeling small perturbations
(Gaussian noise) to accommodate prior information about the
outlier and noise. In our formulation, the unknown target
vector and the noise vector are evaluated by the squared
Euclidean norms, while the outlier is evaluated by the MC
function. We show that the proposed formulation can be solved
via reformulation by the forward-backward-based primal-dual
method [8], provided that the smooth part of the entire cost
function is convex. A necessary and sufficient condition for
the convexity is presented based on a certain general model.
The numerical examples show remarkable robustness of the
proposed method under highly noisy situations.

II. PRELIMINARIES

We briefly give the notation and state the problem addressed
in this work.

A. Notation and definitions
Let R, R++, and N denote the sets of real numbers, strictly

positive real numbers, and nonnegative integers, respectively.
For any n,m ∈ N∗ := N \ {0}, the n × n identity matrix is
denoted by In, and the n×m zero matrix is denoted by On×m.
Matrix transpose is denoted by (·)T. The largest eigenvalue
of a symmetric matrix is denoted by λmax(·). The ℓ1 and
ℓ2 norms of Euclidean vector x := [x1, x2, · · · , xn]

T ∈ Rn

are defined respectively by ‖x‖1 :=
∑n

i=1 |xi| and ‖x‖2 :=
(
∑n

i=1 x
2
i )

1/2.
Given any function f : H → (−∞,+∞] := R ∪ {+∞}

defined on a real Hilbert space H equipped with the induced
norm ‖·‖, the function

γf : H → R : x 7→ min
y∈H

(
f(y) +

1

2γ
‖x− y‖2

)
(1)

is the Moreau envelope of f of index γ ∈ R++ [9], and

Proxγf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2γ
‖x−y‖2

)
(2)

is the proximity operator of f of index γ.

B. Robust regression under Gaussian noise and sparse outlier
We consider the following linear model: y := Ax⋆ +

ε⋆ + o⋄, where the output vector y is a linear transform
of the unknown vector x⋆ ∈ Rn under the known matrix
A ∈ Rm×n subject to the Gaussian noise ε⋆ ∈ Rm and
the sparse outlier o⋄ ∈ Rm [4]. We assume that x⋆ ∈ Rn

and ε⋆ ∈ Rm are mutually uncorrelated random vectors
both of which obey i.i.d. zero-mean normal distributions with
variances σ2

x⋆
∈ R++ and σ2

ε⋆
∈ R++, respectively (see

Remark 1 for discussions about these statistical assumptions).
In this case, the random vector ξ⋆ := [xT

⋆ εT⋆ ]
T ∈ Rn+m obeys
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a zero-mean normal distribution with its (nonsingular) covari-

ance matrix Σξ⋆ =

[
σ2
x⋆
In On×m

Om×n σ2
ε⋆
Im

]
∈ R(n+m)×(n+m).

III. STABLE OUTLIER-ROBUST REGRESSION IN THE
PRESENCE OF OUTLIER

We first present a comparison between Tukey’s biweight and
MC functions (both of which are nonconvex), which leads to
the proposed formulation involving an auxiliary vector. We
then present the convexity condition for the proposed formu-
lation, and an optimization algorithm is finally presented.

A. Tukey’s biweight and MC functions
Tukey’s biweight is defined by ΦTK

γ (a) :=
∑m

i=1 ϕ
TK
γ (ai),

a := [a1, a2, · · · , am]⊤ ∈ Rm, with ϕTK
γ (a) :=

(γ2/6)
[
1− (1− (a/γ)2)3

]
if |a| ≤ γ; ϕTK

γ (a) := γ2/6 if
|a| > γ. Its derivative (ϕTK

γ )′ has the following properties:
(i) the derivative vanishes (ϕTK

γ )′(0) = 0 at the origin, (ii)
(ϕTK

γ )′ increases up to some point, and (iii) it then decreases
until vanishing completely; i.e., (ϕTK

γ )′(a) = 0 if |a| ≥ γ. This
is the so-called strong redescending property [4] (see Fig. 1).
Property (i) indicates insensitivity to small perturbations as
well as to large outliers.

The MC function, on the other hand, of index γ ∈ R++ is
defined by [6, 7]

ΦMC
γ (a) := ‖a‖1−

γ ‖·‖1 (a) =
m∑
i=1

ϕMC
γ (ai), a ∈ Rm, (3)

where

ϕMC
γ : R → R : a 7→

{
|a| − a2/2γ, if |a| ≤ γ,
γ/2, if |a| > γ.

(4)

We refer to γ as the saturation parameter, since it controls
the points at which ϕMC

γ saturates on each side of the real
axis. The Moreau envelope γ ‖·‖1 coincides with the well-
known Huber function. The MC function ϕMC

γ is differentiable
at all points but the origin, and its derivative is given by
(ϕMC

γ )′(a) = sign(a)− a/γ if |a| ∈ (0, γ); (ϕMC
γ )′(a) = 0 if

|a| ≥ γ (see Fig. 1).1 This implies that (ϕMC
γ )′(a) has property

(iii) raised above, which leads to remarkable robustness against
huge outliers [4], while it lacks property (i), i.e., the derivative
does not vanish at the origin: lima↓0(ϕ

MC
γ )′(a) = 1 and

lima↑0(ϕ
MC
γ )′(a) = −1. We therefore introduce an auxiliary

vector in our formulation to model small (and nonsparse)
perturbations so that the residual evaluated by the MC function
is desired to be exactly sparse.

B. Proposed formulation
Relying on the sparsity of the outlier vector o⋄ as well as the

Gaussianity of x⋆ and ε⋆, we formulate the robust regression
task as follows:2

min
x∈Rn,ε∈Rm

µΦMC
γ (y−(Ax+ε)︸ ︷︷ ︸

estimate of o⋄

)+
1

2σ2
x

‖x‖22+
1

2σ2
ε

‖ε‖22 , (5)

1The figure may suggest a possible relation between the MC loss and
Hampel’s three part redescending function (the piecewise linear derivative)
[4]. However, the MC loss is not a special case of Hampel’s function (nor its
limit).

2A related formulation has been presented in [10] in the context of robust
recovery of jointly sparse signals, involving the MC loss but not discriminating
noise and outlier explicitly unlike the present work.
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Fig. 1. The derivatives of ηϕTK
γ and ϕMC

γ for γ := 1 and η := 25
√
5/16.

where µ ∈ R++ is the regularization parameter, σ2
x ∈ R++

and σ2
ε ∈ R++ are estimates of σ2

x⋆
and σ2

ε⋆
, respectively.

The first term ΦMC
γ (y − (Ax + ε)) of (5) is the MC loss

encouraging sparsity of the estimation residual y− (Ax+ ε)
which can be regarded as an estimate of the sparse outlier.
The last two terms are derived directly from the Gaussianity
assumptions (see Remark 1 below) of x⋆ and ε⋆, playing
double roles of convexification and regularization (in the
Tikhonov sense). Intuitively, when the noise power σ2

ε⋆
is

large, the inverse σ−2
ε of its estimate would be small, allowing

‖ε‖22 to be large so that ε mimics ε⋆ (of which the norm ‖ε⋆‖2
is expected to be large due to the large noise power) well to
mitigate the MC loss ΦMC

γ (y − (Ax + ε)) efficiently. This
leads to the “stability” of our estimator in the spirit of [11].
We therefore call it stable outlier-robust regression (SORR).
We present below the SORR formulation in a slightly different
shape:

min
x∈Rn,ε∈Rm

µ̃ΦMC
γ (y − (Ax+ ε)) +

1

2
‖x‖22 +

ρ

2
‖ε‖22 , (6)

where ρ := σ2
x/σ

2
ε ∈ R++ is an estimate of the signal to noise

ratio (SNR), and µ̃ := σ2
xµ ∈ R++ (see Remarks 1 and 2).

The performance of the SORR estimator is fairly insensitive
to small fluctuations of ρ, as shown in Section V.

Remark 1 (Insensitivity to the Gaussianity assumptions)
To make the formulation in (5) perfectly matches the
statistical properties of the signals, x and ε have been
assumed Gaussian. However, this does not imply that the
proposed estimator breaks down immediately when the
statistical assumptions are violated. This is in analogy with
the fact that the Tikhonov regularization works well in a
wide range of situations. We actually tested a case when
x and ε are uniformly distributed, and we observed that
SORR performed equally well to the Gaussian case under
appropriate tuning of ρ, which has no direct link to the SNR
any more in such a non-Gaussian case. (The results will be
reported elsewhere.) In our recent work, moreover, SORR has
been extended to the case when x⋆ is a sparse vector [12].
Finally, it is straightforward to extend SORR to anisotropic
Gaussian distributions.

C. Convexity condition
Let ξ := [xT εT] ∈ Rn+m, Θ := [A Im] ∈ Rm×(n+m),

and Q :=

[
In On×m

Om×n ρ1/2Im

]
∈ R(n+m)×(n+m). The pro-

posed formulation in (6) can then be rewritten as

min
ξ∈Rn+m

J(ξ) :=
1

2
‖Qξ‖22 + µ̃ΦMC

γ (Θξ − y). (7)
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Note here that ΦMC
γ (Θξ − y) = ΦMC

γ (y −Θξ). By (3) and
(7), we obtain

J(ξ) =
1

2
‖Qξ‖22 − µ̃ γ ‖·‖1 (Θξ − y)︸ ︷︷ ︸

=:F (ξ)

+Ψ̃(Θξ). (8)

Here, Ψ̃(z) := µ̃ ‖z − y‖1, z ∈ Rm, is clearly convex, while
F (ξ) is smooth and it is convex under the condition below.

Proposition 1 (Convexity condition for SORR (8))
The smooth part F (ξ) is convex if and only if
µ̃ ∈ [0, γ/(ρ−1 + λmax(A

TA))].

Remark 2 (Parameter design) The SORR formulation in (6)
has the three parameters µ̃, γ, and ρ. Regarding the regu-
larization parameter µ̃, the particular choice µ̃ = γ/[ρ−1 +
λmax(A

TA)] is recommended, as it usually gives the best per-
formance in the range given in Proposition 1. This is because
a smaller µ̃ makes the effect of the Tikhonov regularization
stronger, causing undesirable estimation bias.3 The saturation
parameter γ can be designed depending on the minimal
value of “disturbances” that could be regarded as outliers.
The SNR estimate ρ can be designed based on the prior
knowledge about noise conditions of environments, because
it is usually possible to measure only noises in advance in
typical communication systems. If such prior knowledge is
unavailable, it is recommended to set ρ to a reasonably large
value, such as ρ = 0.1. The reason is the following. A too
small ρ diminishes the upper bound of µ̃. As a result, the
regularization effects become overwhelming, and this causes
unacceptably large errors, as shown in Section V.

D. Optimization algorithm
An application of the forward-backward-based primal-dual

method [8] to (7) yields the following algorithm.

Algorithm 1 (Primal-dual debiasing algorithm)
Set: ξ0 ∈ Rn+m, v0 ∈ Rm, (τ, σ) ∈ R2

++, βk ∈ R++

For k = 0, 1, 2, · · · , do:
sk = ξk − τ∇F (ξk) ∈ Rn+m

uk = sk − τΘTvk ∈ Rn+m

qk = ProxσΨ̃∗(vk + σΘuk) ∈ Rm

pk = sk − τΘTqk ∈ Rn+m

(ξk+1,vk+1) = (ξk,vk) + βk [(pk, qk)− (ξk,vk)]
End

As the gradient of the Moreau envelope in (1) is given
by ∇ γf(x) = γ−1 (x− Proxγf (x)) which is γ−1-Lipschitz
continuous [9, 13], the gradient in the algorithm is given by

∇F (ξ) = Q2ξ − µ̃ΘT[Θξ − y − Softγ(Θξ − y)]/γ,

where Softγ := Proxγ∥·∥1
: Rm → Rm : [z1, z2, · · · , zm]T 7→

[soft(z1), soft(z2), · · · , soft(zm)]T is the shrinkage (soft
thresholding) operator. Here, soft : R → R : a 7→
sign(a)max{0, |a| − γ} with sign(a) := 1 if a ≥ 0;
sign(a) := −1 otherwise. By virtue of the identity Proxγf +
γProxf∗/γ ◦γ−1I = I , where I denotes the identity operator,
the proximity operator can be computed as

ProxσΨ̃∗(z) = z − σ
[
y + Softµ̃σ−1(σ−1z − y)

]
, z ∈ Rm.

3In case that µ̃ exceeds the range given in Proposition 1, the regularization
effect becomes weaker but the global optimality is no longer guaranteed due
to nonconvexity.

The following result is immediate from [8].

Theorem 1 Suppose that F (ξ) is convex according to the
condition given in Proposition 1. Then, the sequence (ξk)k∈N
generated by Algorithm 1 converges to a solution of (7)
under the following conditions: (i) τσ ‖Θ‖2 ∈ (0, 1) and
τ ∈ (0, 2/(κ + µ̃γ−1 ‖Θ‖2)), and (ii) (βk)k∈N ⊂ (0, 1] and
infk∈N βk ∈ R++. Here, κ := λmax(Q

2) = max{1, ρ}, and
‖Θ‖ is the spectral norm which can be computed by ‖Θ‖2 =
λmax(ΘΘT) = λmax(AAT + Im) = λmax(AAT) + 1.

Note that the other conditions given in [8] are satisfied
automatically in the present case, because the function J(ξ)
in (7) has a minimizer as it is coercive4, and int(dom Ψ̃) ∩
rangeΘ = Rm 6= ∅. We finally mention that the computa-
tional complexity per iteration is O(mn).

IV. CONVEXITY ANALYSIS IN A GENERAL FORM

We present our convexity analysis in a general form, which
can potentially be used for different formulations and which
will avoid unnecessary repetitions of deriving convexity con-
ditions when one considers such different formulations.

A. A general model including SORR as a specific example
Let X , Y , and Z be finite-dimensional Hilbert spaces. In

any of those spaces, we denote the zero vector by 0, the
inner product by 〈·, ·〉, its induced norm by ‖·‖, and the zero
operator by O. The set of all proper lower-semicontinuous
convex functions defined over a Hilbert space H is denoted
by Γ0(H).5 Define a couple of affine operators A1 : X → Y :
x 7→ M1x + c1 and A2 : X → Z : x 7→ M2x + c2, where
(O 6=)M1 : X → Y and (O 6=)M2 : X → Z are bounded
linear operators, and c1 ∈ Y and c2 ∈ Z are constant vectors.
Let D : Z → Z be a diagonal positive-definite operator; i.e.,
〈Dz, z〉 > 0 for all z ∈ Z \{0}. Given a function Ψ ∈ Γ0(Z),
we consider the following minimization problem:

min
x∈X

1

2
‖A1x‖2 + µΨD(A2x), (9)

where µ ∈ R++ is the regularization parameter and ΨD(z) :=

Ψ(z) −minv∈Z

(
Ψ(v) + 1

2 ‖D(z − v)‖2
)
, z ∈ Z . The pro-

posed formulation presented in (7) is reproduced by letting
in (9) X := Y := Rn+m, Z := Rm, µ := µ̃, Ψ := ‖·‖1,
D := γ−1/2Im, A1 := M1 := Q, and A2 : ξ 7→ Θξ−y (i.e.,
M2 := Θ and c2 := −y). Note that µ̃Ψ(A2ξ) = Ψ̃(Θξ).

Remark 3 (Relation to the existing model) The model in
(9) can be regarded as a particular example of the linearly
involved generalized Moreau enhanced (LiGME) model [14]
by expressing ΨD(A2x) = Ψ̃D(M2x) with Ψ̃ := Ψ(· + c2).
Note however that we present our model in the form of (9)
because it is suitable for robust regression. We emphasize that
the convexity results to be presented in Section IV-C cannot
be obtained straightforwardly from the results of [14].

4A function f ∈ Γ0(H) is coercive if f(x) → +∞ as ∥x∥ → +∞.
5A function f : H → (−∞,+∞] is convex on H if f(αx+(1−α)y) ≤

αf(x) + (1 − α)f(y) for all (x, y, α) ∈ dom f × dom f × [0, 1], where
dom f := {x ∈ H | f(x) < +∞}. If in addition dom f ̸= ∅, f is a proper
convex function. A convex function f : H → (−∞,+∞] is lower semicon-
tinuous (or closed) on H if the level set lev≤af := {x ∈ H : f(x) ≤ a} is
closed for every a ∈ R.
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B. Decomposition into smooth and nonsmooth parts
Due to the nonsingularity of D, it can be verified that [1]

ΨD(z) = Ψ(z)− 1(Ψ ◦D−1)(Dz) (10)

= Ψ(z)− 1

2
‖Dz‖2 + 1(Ψ∗ ◦D)(Dz), (11)

where Ψ∗ ∈ Γ0(Z) : z 7→ supv∈Z 〈z, v〉−Ψ(v) is the Fenchel
conjugate of Ψ. The equality in (11) relies on the following
facts: for any f ∈ Γ0(Z), (i) γf + 1/γ(f∗) ◦ γ−1I = 1

2γ ‖·‖2

for any γ ∈ R++ [9, Theorem 14.3], and (ii) (f ◦ L)∗ =
f∗◦(L∗)−1 for any bijective bounded linear operator L : Z →
Z with its adjoint operator L∗. From (10), the optimization
problem in (9) can be rewritten as

min
x∈X

1

2
‖A1x‖2 − µ 1(Ψ ◦D−1)(DA2x)︸ ︷︷ ︸

=:F (x) (smooth)

+ µΨ(A2x).︸ ︷︷ ︸
(nonsmooth)

(12)

It is clear that µΨ(A2x) is convex due to the convexity of Ψ
as well as the fact that convexity is preserved under affine
transform [9, Proposition 8.20]. The following subsection
therefore concerns convexity of the smooth part F (x).

C. Convexity analysis for the smooth part
Comparing (9) and (12) under (11) yields

F (x) =
1

2
‖A1x‖2−

µ

2
‖DA2x‖2+µ1(Ψ∗◦D)(DA2x). (13)

The convexity condition of F (x) is given in the following
proposition, in which the sufficiency is immediate by consid-
ering convexity of the quadratic part of the expression in (13).

Proposition 2 (Convexity condition for smooth part of (12))
(a) F ∈ Γ0(X ) if

(♠) M∗
1M1 − µM∗

2D
2M2 � O.

Here, we denote by L � O to mean that a given bounded
linear operator L : X → X is positive semidefinite; i.e.,
〈Lx, x〉 ≥ 0 for all x ∈ X .

(b) Let Ψ := σC : Z → (−∞,+∞] : z 7→ supv∈C 〈z, v〉 is
the support function of a nonempty closed convex set6
C ⊂ Z . Then, the following statements hold.

(i) Given any x ∈ X , the following equivalence holds:

F (x) =
1

2
‖A1x‖2 −

µ

2
‖DA2x‖2

⇔ 1(σ∗
C ◦D)(DA2x) = 0

⇔ x ∈ K := {x̂ ∈ X | D2A2x̂ ∈ C}.

(ii) Assume that intK 6= ∅. Then, F ∈ Γ0(X ) if and
only if (♠) is satisfied.

The following result follows immediately by Proposition 2.

Corollary 1 Let Ψ := ||| · ||| be an arbitrary norm defined on
Z , which can be expressed alternatively as Ψ = σlev≤1|||·|||∗
with the dual norm ||| · |||∗ := σlev≤1|||·||| [15, 16]. Assume
that one of the following conditions are satisfied: (i) c2 = 0,
(ii) rangeM2 = Z , or (iii) A2x̂ = 0 for some x̂ ∈ X . Then,
F ∈ Γ0(X ) if and only if condition (♠) is satisfied.

6A set C ⊂ H is said to be convex if αx + (1 − α)y ∈ C for all
(x, y, α) ∈ C × C × [0, 1].

Proposition 2 can be verified by Corollary 1 with
rangeΘ = Rm 6= ∅. The convexity analysis for a more
general model than given in (9) is presented in [1]. Corollary
1 under the correspondences presented in the end of Section
IV-A yields Proposition 1.

V. NUMERICAL EXAMPLES

We compare the performance of SORR for robust regression
with those of ridge regression, LAD [4], LAD-ridge (ℓ1-loss
+ Tikhonov regularization), Huber’s loss γ ‖·‖1 [3, 4], Tukey’s
biweight loss [5] for which the implementation follows [3]
with LAD-ridge adopted as a “strong” initializer, and the
state-of-the-art method called the robust projected general-
ized gradient (RPGG) algorithm [17] which is based on the
following formulation7: minx∈Rn,e∈Rm µΦMC

γ1
(x) + ΦMC

γ2
(e)

subject to y = Ax + e for γ1, γ2 ∈ (0,+∞]. We also show
the performance of the ordinary least square (OLS) solution
A†y (which is an unbiased estimate) as a benchmark. The
unknown vector x⋆ ∈ Rn is generated randomly from the
i.i.d. standard Gaussian distribution (i.e., σ2

x := 1) for n := 64,
the input matrix A ∈ Rm×n is also i.i.d. standard Gaussian,
and the noise vector ε⋆ ∈ Rm is i.i.d. zero-mean Gaussian with
SNR 5 dB, where SNR := ‖Ax⋆‖22/‖ε⋆‖22. The outlier vector
o⋄ is sparse with nonzero positions chosen randomly and
with nonzero components generated from an i.i.d. zero-mean
Gaussian distribution. For SORR, the algorithm parameters τ
and σ are set to slightly smaller values than the upper bounds,
respectively, given under Algorithm 1. We simply let βk := 1
for all k ∈ N, and tune γ by grid search with µ̃ set to the upper
bound given in Proposition 1. For RPGG, we let γ1 := +∞
(i.e., ΦMC

γ1
= ‖·‖1) as x⋆ is nonsparse, and tune µ and γ2 as

well as the step size by grid search. For the other methods
involving regularizers, the regularization parameters are tuned
by grid search to attain the best performance. For Huber’s
loss, γ is chosen to attain the best performance. The results
are averaged over 300 trials.

Figure 2 plots the system mismatch ‖x⋆ − x‖22 / ‖x⋆‖22
across (a) outlier density supp(o⋄)/m, (b) signal-to-outlier
ratio, SOR := (‖Ax⋆‖22/m)/[‖o⋄‖22/supp(o⋄)], and (c) m/n,
where supp(x) := |{i ∈ {1, 2, · · · ,m} | xi 6= 0}|. Here, ρ :=
σ2
x⋆
/σ2

ε⋆
is used for SORR to show its potential performance.

The proposed SORR method exhibits highly accurate and
stable performances, and it outperforms all the other meth-
ods significantly. Remarkably, the performances of SORR in
Fig. 2(b) even improve as SOR decreases below −15 dB.
This is because the influence of huge outliers on the MC
loss vanishes above a certain range and because such huge
outliers will be easier to detect at the same time. The results
clearly indicate the remarkable robustness of SORR against
huge outliers. Remarkably, Tukey’s loss performs even worse
than LAD-ridge (the initializer of Tukey’s loss) in the low m/n
(small sample) regime, while its performance is comparable to
that of SORR in the high m/n (large sample) regime. It should
be mentioned that LAD and Huber’s loss perform poorly due
to the presence of heavy noise as well as strong outliers, which
make the norms of their corresponding estimates considerably
large (LAD-ridge is free from such an issue owing to the
Tikhonov regularization). We mention that RPGG also exhibits
a similar tendency over some range, although its performance
degrades below the range as noise and outlier are not explicitly
discriminated in its formulation.

7Although RPGG is a method for robust sparse recovery, it could be used
in the present nonsparse case by letting µ := 0. We instead tune the µ to seek
for its potentially better performances. The MC function is employed in our
simulations for both data fidelity and penalty, as in the simulations of [17].

2239



0 20 40
outlier [%]

−6

−4

−2

0
sy

st
em

m
is

m
at

ch
[d

B
] OLS

ridge

LAD

LAD-ridge

Huber

Tukey biweight

RPGG

SORR

(a) SOR −30 dB, m = 128

−40 −20 0
SOR [dB]

−4

−2

0

sy
st

em
m

is
m

at
ch

[d
B

] OLS

ridge

LAD

LAD-ridge

Huber

Tukey biweight

RPGG

SORR

(b) outlier 30 %, m = 128

19
20

1 2 3 4 5
m/n

−7.5

−5.0

−2.5

0.0

sy
st

em
m

is
m

at
ch

[d
B

] OLS

ridge

LAD

LAD-ridge

Huber

Tukey biweight

RPGG

SORR

(c) SOR −30 dB, outlier 30 %

Fig. 2. System mismatch for n = 64 under SNR 5 dB.

10−2 10−1 100 101

ρ

−4.5

−4.0

−3.5

sy
st

em
m

is
m

at
ch

[d
B

]

Fig. 3. Insensitivity of SORR to small fluctuations of ρ. Outlier 30%, SOR
−30 dB, and m = 128. The blue dashed line depicts ρ := σ2

x⋆
/σ2

ϵ⋆ .

Figure 3 shows the performance of the SORR estimator
across the parameter ρ under outlier density 30%, SOR −30
dB, and m = 128. The results indicate reasonable insensitivity
of SORR to small fluctuations of ρ. It can also be seen that
the performance changes slower when ρ increases, than when
it decreases, from the optimal value (see Remark 2).

VI. CONCLUDING REMARKS

We presented the SORR estimator which is robust against
strong outliers and is stable under severe Gaussian noises. For
stability in noisy environments, the auxiliary vector modeling
the Gaussian noise was introduced to reflect the outlier spar-
sity and the noise Gaussianity properly in the formulation.
The unknown target vector and the noise vector are thus
evaluated by the squared Euclidean norms, while the outlier
(corresponding to the estimation residual) is evaluated by
the MC function. The rigorous analysis of convexity was
presented in the general form. We showed that the proposed
formulation was able to be solved via reformulation by the
forward-backward-based primal-dual method under the con-
vexity condition. The numerical examples showed that the
SORR estimator was remarkably robust against large outliers
and stable in the highly noisy situations at the same time. In
particular, SORR significantly outperformed Tukey’s biweight
loss (as well as Huber’s loss) in the small sample regime.
This is quite advantageous particularly in high dimensional
data analysis.

The SORR estimator successfully resolves the tradeoff
between robustness and mathematical tractability, which was
highlighted in Section I. The general result on convexity will
be useful for a wide range of problems including robust
classification (see [1]). It will be our interesting future work
to extend the SORR estimator to the case of heavy tailed
distributions.
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