
SPLIT MULTIPLE RADIX FFT
Ryszard Stasinski

Institute of Multimedia Telecommunications
Poznan University of Technology

Poznan, Poland
ryszard.stasinski@put.poznan.pl

Fig. 1. Function m(i, j) for radix-6:2&3 C-FFT.

Abstract—In the paper general rules for construction of split-
radix FFTs having multiple auxiliary bases is presented. The
algorithms exist for DFT sizes being products of mutually
prime numbers. The algorithms have smaller arithmetical and
multiplicative complexities than simpler FFTs, parameters al-
lowing comparison are also introduced. The obtained results
are remarkable, some of FFTs have smaller arithmetical, or at
least multiplicative complexities than ”standard” split-radix FFT.
When compared to other algorithms for such N savings in the
numbers of arithmetical operations emerge even for the smallest
useful DFT sizes. The presented techniques provides new tools for
construction of optimized FFTs, e.g. DFT modules for very large
radix algorithms generated by automatic software, like FFTW.

Index Terms—algorithms, DFT, FFT, split-radix

I. INTRODUCTION

The discovery of Fast Fourier Transform algorithm (FFT)
[1] promted many publications on algorithms for the Discrete
Fourier Transform (DFT), including two special issues on this
subject of IEEE AU Transactions [2]. If restricting our atten-
tion to FFT, the next important achievment was introduction of
split-radix FFT [3], which improved version was published in
[4]. Then, in [5] split-radix FFT with more than one auxiliary
base was presented, as it is shown in Table 1 (parameter aT ),
the algorithm has the smallest arithmetical complexity among
FFTs. Its multiplications are defined in µ base, which leads to
operation savings in radix-3, -6, and -12 FFTs [6].

Support: Ministery of Science and Education grant 0314/SBAD/0210.

The paper is motivated by a striking behaviour of recursive
equation solution:

M(N) = N +M(N/2) +M(N/3) +M(N/6) (1)

being simplified formula on the FFT number of multiplications
for an improved from this point of view version of [5] from
[7], N = 2i · 3j . Edge conditions are:

M(N) = N +M(N/2) + 2 ·M(N/4)

for N = 2i (split-radix-4:2 FFT, radix 2/4 in [3]),

M(N) = 2N + 3M(N/3)

for N = 3j (radix-3 FFT from [7]), M(0) = M(2) = 0.
Figure 1 shows function m(i, j) for this equation:

m(i, j) =
M(2i · 3j)

2i3j log2(2
i3j)

(2)

Note that visualized in the same way function for non-split-
radix FFT for N = 2i3j forms a relativey flat surface, here the
function is concave with bottom values much below those at
the edges. Namely, for split-radix-4:2 FFT m(i, 0) ≈ 1 (edge
algorithm), while here its values go down to approximately
0.7, and diminish even further with growing N . This behaviour
of recursive equations results in different values of aM and aT
parameters for FFTs radix-6µ, and radix-6µ:2&3 in Table 1,
compare also three tadix-10T algorithms there. The depression
goes along a line which direction is indicated by proportion
of i : j close to 4 : 3, see parameter b in Table 1.

It is necessary to explain here the convention for denoting
split-multiple-radix FFTs used in this paper, as current notation
is impossible to implement:

radix-K :M&M ′& . . .,
where K is the main radix, and M,M ′, . . . are the auxiliary
ones, defined as in section III. Then, the split-radix FFT is
radix-4:2 one [3], FFTs from [5], [7] are radix-6:2&3 ones,
and an ordinary radix-K FFT can be denoted as radix-K:1.

The paper is organized as follows: Firstly, it is explained
why split-radix FFTs have smaller arithmetical complexity
than the regular algorithms, section II. In the following section
derivation of split-multiple-radix FFTs is presented, section
III, followed by a section on complexity measures for the
algorithms, section IV. Then, results for some FFT radices
are provided, Table 1, section V. Exemplary radix-5:2&5
algorithm is presented in Figure 3. It is shown that indeed, the
new split-multiple-radix FFTs are highly efficient, and some
are even better than ”standard” split-radix one [3].

2251ISBN: 978-1-6654-6798-8 EUSIPCO 2022



II. BACKGROUND

Fast Fourier Transform algorithm is derived using ”divide
and conquer” technique. The derivation is unbalanced [10].
Namely, let us assume that DFT size N is divisible by a
number K. Then, computation of DFT samples X(Kk), k =
0, 1, . . . , N/K − 1, is computationally simpler than those for
X(Kk + i), i = 1, 2, . . . ,K − 1, [2]:

X(Kk) =

N/K−1∑
n′=0

[

K−1∑
n′′=0

x(n′′N/K + n′)]W kn′

N/K (3)

X(Kk+i) =

N/K−1∑
n′=0

W in′

N [

K−1∑
n′′=0

x(n′′N/K+n′)W in′′

K ]W kn′

N/K

(4)
It seems that when N = pr, p is prime, then the best choice
for FFT radix is K = p. Note, however that the inner sum in
(4) is the K-point DFT, and as there exist optimized DFT
algorithms of small size, for some p better algorithms are
obtained when K is a power of p. This observation led to
split-radix FFTs: they have two bases, the auxiliary one M = p
for computing samples X(Mk), and the primary one K for
computing X(Kk + i), this time index i takes on all values
that are mutually prime with K1.

Even more interesting is the case when N = prqs, q is
a prime, too. In such situation it seems that we should do a
compromise, choose as a secondary base either p, or q. In [5]
an algorithm for p = 2, q = 3 was presented in which both
secondary bases were used, which resulted in an exceptionally
low arithmetical complexity. The technique was explained
in [7], where additionally the version of the algorithm with
reduced multiplicative complexity was presented. This paper
presents generalization of the idea.

III. DERIVATIONS

Computation of DFT for a series x(n) can be interpreted
as reduction of polynomial X(Z) modulo all divisors of a
polynomial ZN − 1 [8]:

X(k) = X(Z) mod (Z −W k
N ) =

N−1∑
n=0

x(n)W kn
N , (5)

k = 0, 1, . . . N − 1; X(Z) =

N−1∑
n=0

x(n)Zn;

WN is a primitive root of unity of rank N . The computation
process can be broken up into two stages: Firstly, residue poly-
nomials modulo ZN ′ − 1, and P (Z) = (ZN − 1)/(ZN ′ − 1)
are computed, N ′ is a divisor of N :

X0(Z) = X(Z) mod ZN ′ − 1,
X1(Z) = X(Z) mod P (Z).

(6)

Then, they are reduced in accordance with (5). Note that
reductions modulo divisors of ZN ′ − 1 are equivalent to

1For p = 2 all algorithms for M being a power of 2 smaller than the power
of 2 for K have the same arithmetical complexity.

computation of DFT of size N ′, the other operations are
named N -point DFT reduced modulo P (Z) [8]. The actual
size of such DFT is N − N ′. Namely, they lack reductions
modulo P (Z) (data are already reduced), reductions modulo
ZN ′ − 1 and the following them N ′-point DFT, see equations
(8). Reductions modulo ZN ′ − 1 are trivial:

x0(n
′) =

N/N ′−1∑
n′′=0

x(n′ + n′′ ·N ′), n′ = 0, 1, . . . N ′ − 1, (7)

x0(n
′) are coefficients of X0(Z). Note that for K = N/N ′ (7)

is equal to inner sum in (3), hence, samples X(0) of K-point
DFTs inside FFT butterflies can be interpreted as coefficients
of polynomial X0(Z) when N ′ = N/K.

Let us consider derivation of radix-K FFT, in which
N/N ′ = M < K. Input samples to n′-th K-point DFT in
(3), (4) are:

x(n′ + n′′ ·N/K), n′′ = 0, 1, . . .K − 1.

A comparison with (7) shows that reductions modulo ZN ′ −
1 = ZN/M − 1 for the whole DFT end before computation of
samples X(0) of K-point butterfly DFTs, they form reductions
modulo ZK/M −1 inside them. Split-radix butterfly is formed
when operations of K-point DFTs following reductions mod-
ulo ZK/M − 1 are removed.

For example, butterfly of the radix-10 FFT contains 10-point
DFT, which can be mapped into 2× 5-point one, i.e. 2-point
DFTs go first. 2-point DFTs contain additions x(n) + x(n +
5), which work as reductions modulo Z10/2 − 1 = Z5 − 1,
hence, radix-10:2 butterfly is obtained by removing 5-point
DFT following these operations, it lacks in Figure 3.

Up to now it was not necessary to implement reductions
modulo P (Z) (6), calculations in accordance with (4) did
the job. Moreover, if K is odd, structures linked with this
reduction slightly increase the number of additions of the
algorithm, see [7], where the reductions are implemented.
However, when K is a product of mutually prime numbers,
e.g. for N divisible by 6, parallel implementation of reductions
modulo ZN/2−1, and ZN/3−1 leads to computation of DFT
samples X(6k) twice. Solution consists in puting reduction
modulo ZN/M ′ − 1 for the second base M ′ behind that
modulo P (Z) [5], [7], in this way reductions for the second
base are done modulo P ′(Z) = gcd{P (Z), ZN/M ′ − 1} =
(ZN/M ′−1)/(Z(N/M ′)/M−1). As a result the DFT following
the operations is N/M ′-point one reduced modulo P ′(Z).

There are two types of butterflies of such split-radix-K
FFTs: the basic ones start with reductions modulo ZK/M −1,
and (ZK − 1)/(ZK/M − 1), which stage is obsolete in
butterflies beginning the N/M ′-point DFT reduced modulo
P ′(Z). Then, the second reductions are followed by (or the
butterfly start with) K-point DFT reduced modulo (ZK −
1)/(ZK/M − 1), and rotation factors at the end. Structures
following reductions modulo ZK/M − 1, ZK/M ′ − 1 are
removed. The above construction can be repeated for next
auxiliary bases, e.g. for K = 30 possible M are 2, 3, and 5. In
such case reductions modulo ZK/M ′ − 1 are done in parallel

2252



with modulo (ZK − 1)/(ZK/M ′ − 1) ones, then follow those
for ZK/M ′′ − 1 and ”doubly reduced” K-point DFTs.

Coming back to Figure 3, the other operations of 2-point
DFTs are x(n)−x(n+5), which are equivalent to reductions
modulo (Z10 − 1)/(Z5 − 1) = Z5 + 1, hence, the following
5-point DFT is equivalent to reduced modulo Z5+1 10-point
DFT. Reductions modulo Z10/5− 1 = Z2− 1 consist in com-
putation of sums x(i)+x(2+i)+x(4+i)+x(6+i)+x(8+i),
i = 0, 1, which is equivalent to computations of samples X(0)
of 5-point DFTs when 10-point DFT is organized as 5×2 one,
i.e. in which 5-point DFTs come first. Note that sample X0
is equal to difference: the sum for i = 0 minus that for i = 1,
which means that indeed, both reductions Z2 − 1 and Z5 + 1
are done. As every DFT algorithm for power of 2 starts with
sums x(n) ± x(n + K/2), equivalent to reductions modulo
ZK/2 ± 1, a perfect value for p is 2. This stage is absent in
initial butterflies of reduced radix-10:2&5 FFTs, compare [7],
where radix-6:2&3 and radix-6:3&2 FFTs are presented.

IV. ASYMPTOTIC EVALUATIONS
Let us assume that an FFT main radix is K = ps·qt, where p

and q are mutually prime, s, t ≥ 1. Then, a simplified recursive
equations for the number of operations T (N) for the N -point
radix-K:p&q FFT is, compare [7]:

T (N) = γN + T (N/p) + T ′(N/q)+
+ps−1qt−1(p− 1)(q − 1)T (N/psqt)

T ′(N) = γ′N + T ′(N/q)+
+ps−1qt−1(p− 1)(q − 1)T (N/psqt) =
= (γ′ − γ)N + T (N)− T (N/p)

(8)

where T ′(N) is for the reduced algorithm. Note that

T ′(N) = (γ′ − γ)N + T (N)− T (N/p) (9)

hence,

T (N) = cN + T (N/p) + T (N/q)− T (N/pq)+
+ps−1qt−1(p− 1)(q − 1)T (N/psqt)

(10)

where:
c =

(q − 1)γ + γ′

q

Now assume that:

T (N) = aTN log2N (11)

Substitution of (11) for T (N) in (10) leads to the following
expression on asymptotic coefficient aT :

aT =
= cpq

[s(p−1)+1](q−1) log p+[t(q−1)+1](p−1) log q
(12)

It is interesting to find a formula on N for which (11) holds
(direction of depression in Figure 1). Let us consider a simpler
version of the algorithm for s = t = 1 (10):

T (N) = cN + T (N/p) + T (N/q) + (d− 1)T (N/pq), (13)

d = (p−1)(q−1). Let N = pvqw, v >> w. It can be proven
that for large N the formula on the algorithm complexity is:

T (pvqw) = [av + (c− q − 1

q
a)

p

p− 1
w]pvqw (14)

Fig. 2. Graphical representation of derivation of (15).

Notation and the first step of derivation (for w = 1) is
illustrated in Figure 2, the edge algorithm complexity is
aN logpN = avpv , the formula for the other edge is bwqw.
Then, the number of operations for the algorithm is:

T (pvq) = cq

v∑
i=1

pi + avpv + ad

v−1∑
i=1

ipi + bq (15)

The next step of derivation consists in transforming (15)
into (14) for w = 1 by ignoring all terms o(pv). Then, we
assume that (14) holds for all transform sizes for w − 1, do
computations as in Figure 2, and ignore terms o(pv). Equation
for algorithms close to other edge is analogous, p, v, q, w, a
should be replaced by q, w, p, v, b, respectively. The equations
depict asymptotic surfaces to which nears solution of equation
(13) for very large v and w. They meet when:

v

w
=

(q − 1)p

(p− 1)q
(16)

for which proportion algorithm complexity appears to be:

T (N) =
cpq

p(q − 1) log p+ q(p− 1) log q
N logN

We recognize here aT value when s = t = 1 (12). That is
why in Table 1 b (base) parameter is introduced:

b = 2
c

aT (17)

which probably indicates direction of depression not only
when K = pq. For example, in equation (1) c = 1, which
results in:

aM = 6
4+3 log 3 = 0.68533...

b = 2(4+3 log 3)/6 = (24 · 33)1/6

see Figure 1.

2253



In the case of radix-K:p&q&r FFT for K = ps · qt · ru
recursive equations on the number of operations are:

T (N) = γN + T (N/p) + T ′(N/q) + T ′′(N/r)+
+ps−1qt−1ru−1(p− 1)(q − 1)(r − 1)T (N/psqtru)
T ′(N) = (γ′ − γ)N + T (N)− T (N/p)
T ′′(N) = (γ′′ − γ)N + T (N)− T (N/p)− T ′(N/q)

(18)
compare (9), T ′′(N) is for ”doubly reduced” transform. The
resultant expression on aT contains fraction with very long
denominator, hence, we provide it in a non-direct form:

c
aT
pqr = [s(p− 1) + 1](q − 1)(r − 1) log p+

+[t(q − 1) + 1](p− 1)(r − 1) log q+
+[u(r − 1) + 1](p− 1)(q − 1) log r

(19)

where

c =
(q − 1)(r − 1)γ + (r − 1)γ′ + qγ′′

qr

V. RESULTS

In Table 1 arithmetical (aT ) and multiplicative (aM ) com-
plexities of few split-multiple-radix FFTs are compared to
those for reference FFTs: radix-2 and 4, split-radix [3], im-
proved split-radix [4], denoted radix-4F:2, and the best non-
split-radix-6 FFT, denoted 6µ [6]. FFT radix-4F:2 is the best
algorithm for N = 2i, hence, its parameters are in bold
for easy comparison. The lowest aT value is in bold, too.
Asymptotic coefficients are obtained from coefficients c of
recursive equations, calculated from numbers of multiplica-
tions (mults) and additions for FFT butterflies. As reduced and
doubly reduced butterflies have smaller number of additions
(adds’, adds”), the c for the total number of arithmetical
operations (total) is computed from γ coefficients, plus c for
multiplications, see section IV. Formulas on base (b) indicate
N , for which the algorithms are the best.

Two versions of algorithms are provided: optimized for
the number of multiplications, and another optimized for
the number of arithmetical operations. DFT algorithms are
constructed using DFT modules from [8], Winograd nesting is
applied, T means T-FFT [10], used in the last six algorithms
3-point reduced DFT is shown in [7].

Possible improvements are explained in Figure 3 for the
radix-10:2&5 T-FFT. Basic idea of T-FFT is as follows [10]:
When in derivation of radix-K decimation-in-frequency FFT
index i in (4) is defined as follows (K can be odd, too):

i = −(K/2− 1), . . . , 0, 1, . . .K/2,

pairs of complex conjugated rotation factors are obtained.
Then, by combining them with output DFT operations R(α)
operations can be formed. In Figure 3 samples Xi, i =
−3,−1, 1, 3 are inputs to DFTs computing samples X(Kk+
i). R(α) and M have the same form:[

X0

X1

]
=

[
cosα − sinα
sinα cosα

] [
x0
x1

]
where for M α = 3π/10, and for R(α) α = 2πn/N . They
are computed by either 3 multiplications and 3 additions, or

4 and 2 ones. However, if M is divided by e.g. cos 3π/10
(and R operations partly multiplied by it), M can be computed
using 2 multiplications and 2 additions, only. Similarly, upper
multipliers of DFT can be divided by m, and in this way the
third scalar multiplier saved. Analogous optimizations can be
done in butterflies of other radix-2kp FFTs, p is prime.

According to (4) in split-radix-10T:2 (and in ”plain” radix-
10T) FFT butterflies sample X0 in Figure 3 is multiplied
by rotation factor W 5n

N , and followed by N/10-point DFT.
Lack of this multiplier in radix-10T:2&5 butterflies results in
reduced numbers of parameters aT , aM , hence, reduced arith-
metical complexity of the algorithm, Table 1. This is despite
the fact that the sample is followed by nominally greater DFT
(but not actually). This saving emerges even for the smallest
useful size of the FFT being N = 50. ”Disappearing” rotation
factors are characteristic of split-multiple-radix FFTs.

As can be seen, majority of presented in Table 1 split-
multiple-radix FFTs have smaller multiplicative and arithmeti-
cal complexities than the reference FFTs, possibly except for
the radix-4F:2 one. Moreover, there are some that in every
respect are better than radix-4F:2 FFT: radix-K for K = 2k3,
and radix-80:2&5. This is a quite remarkable result.

VI. CONCLUSION
A new class of Fast Fourier Transform algorithms is

investigated in the paper, multiple-split-radix FFTs. In the
algorithms construction imbalance of the divide-and-conquer
technique applied to DFT formula is exploited to the end,
hence, the algorithms have smaller arithmetical complexities
than their standard counterparts. The split-radix FFTs with one
auxiliary base are already known, the paper shows how to
extend the idea to several auxiliary bases, which is the case
when DFT size is a product of powers of prime numbers.
The presented technique results in savings in numbers of
arithmetical operations even for smallest usable data vectors,
hence, it can be implemented in construction of optimized
FFTs of any size.

REFERENCES

[1] J.W. Cooley, J.W. Tukey, ”An algorithm for machine computation of
complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.

[2] —, ”Special issue on fast Fourier transform,” IEEE Trans. Audio
Electroacoust., vol. AU-15, and vol. AU-17, June 1967, and June 1969.

[3] P. Duhamel, H. Hollmann, “Split-radix FFT algorithm”, Electron. Lett.,
vol. 20, No. 1, pp. 14–16, 1984.

[4] S.G. Johnson, M. Frigo, ”A modified split-radix FFT with fewer
arithmetic operations”, IEEE Trans. Signal Processing, vol. 55 (1), pp.
111–119, 2007.

[5] J.-B. Martens, ”Recursive cyclotomic factorization - a new algorithm
for calculating the Discrete Fourier Transform”, IEEE Trans. Acoust.,
Speech, Signal Proces., vol. ASSP-32, pp. 750–761, 1984.

[6] Y. Suzuki, T. Sone, and K. Kido, ”Anew FFT algorithm of radix 3, 6,
and 12”, IEEE Trans. Acoust., Speech, Signal Proces., vol. ASSP-34,
pp. 380–383, 1986.

[7] R. Stasinski, ”Radix-K FFT using K-point convolutions”, IEEE Trans.
Signal Proces., vol. 42, pp. 743–750, 1994.

[8] H.J. Nussbaumer, “Fast Fourier transform and convolution algorithms”,
Springer-Verlag, 1981.

[9] R. Stasinski, “Easy generation of small-N discrete Fourier transform
algorithms”, IEE Proc., Pt. G, Vol. 133, pp. 133–139, 1986.

[10] R. Stasinski, ”The techniques of the generalized fast Fourier transform
algorithm”, IEEE Trans. Signal Proces., vol. 39, pp. 1058–1069, 1994.

2254



x(n+6N/10)

x(n)

x(n+2N/10)

x(n+8N/10)

x(n+4N/10)

x(n+5N/10)

x(n+N/10)

M

-4
-1/4

mx(n+7N/10)

x(n+3N/10)

x(n+9N/10)

R(a) R(3a)

X

X

X

X

-3

-1

1

3

To
N/2-point
FFT

 To reduced N/5-point FFTX0

Fig. 3. Main butterfly of radix-10:2&5 T-FFT; m = (cosu− cos 2u)/2, u = 2π/5, n = 0, 1, . . . , N/10− 1; bar on branch means multiplication by -1.

TABLE I
SOME SPLIT-MULTIPLE-RADIX FFTS.

radix b (17) mults adds adds’ adds” total aM aT
2 2 3 7 – – 10 1.5000 5.0000
4 4 9 25 – – 34 1.1250 4.2500

4:2 [3] 6 18 – – 24 1.0000 4.0000
4F:2 [4] 6 50/3 – – 68/3 1.0000 3.7778
6µ [6] 6 20 46 – – 66 1.2895 4.2554

6µ:2&3 [5] (24 · 33)1/6 8 28 16 – 32 0.9138 3.6551
6C:2&3 [7] 6 31 19 – 33 0.6853 3.7693

12:2&3 (22 · 3)1/2 16 72 48 – 80 0.7449 3.7192
12:2&3 20 68 44 – 80 0.9298 3.7192
24:2&3 (28 · 33)1/6 36 168 120 – 188 0.7056 3.6849
24:2&3 44 160 112 – 188 0.8624 3.6849
48:2&3 (210 · 33)1/6 84 384 288 – 436 0.7116 3.6937
48:2&3 100 368 272 – 436 0.8472 3.6937
10:2&5 (28 · 55)1/10 20 68 48 – 84 1.0199 4.2836

10T:2&5 24 60 40 – 80 1.2239 4.0796
10T:2 30 66 – – 96 1.3883 4.4425
10T 10 54 106 – – 160 1.6256 4.8165

20:2&5 (212 · 55)1/10 40 152 112 – 184 0.8471 3.8967
20:2&5 44 144 104 – 180 0.9318 3.8120
40:2&5 (216 · 55)1/10 84 360 280 – 428 0.7606 3.8755
40:2&5 92 344 264 – 420 0.8330 3.8030
80:2&5 (24 · 5)1/2 180 824 664 – 972 0.7118 3.8438
80:2&5 188 792 632 – 948 0.7434 3.7489
14:2&7 (212 · 77)1/14 32 122 94 – 150 1.0110 4.7391

14T:2&7 38 108 80 – 142 1.2006 4.4864
28:2&7 (218 · 77)1/14 64 268 212 – 324 0.8499 4.3026
28:2&7 68 256 200 – 316 0.9030 4.1964

30:2&3&5 (28 · 36 · 55)1/15 42 236 176 136 242 0.7212 4.1553
30:2&3&5 46 228 168 128 238 0.7899 4.0866
60:2&3&5 (212 · 36 · 55)1/15 84 504 384 304 516 0.6341 3.8950
60:2&3&5 92 488 368 288 508 0.6945 3.8346
84:2&3&7 (218 · 39 · 77)1/21 132 816 648 592 868 0.6356 4.1798
84:2&3&7 140 792 624 568 852 0.6742 4.1028

2255


