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ABSTRACT

Spectral estimation is of significant practical importance in a wide
range of applications. This paper proposes a minimum variance dis-
tortionless response (MVDR) method for spectral estimation based
on the Kronecker product. Taking advantage of the particular struc-
ture of the Fourier vector, we decompose it as a Kronecker product
of two shorter vectors. Then, we design the spectral estimation fil-
ters under the same structure, i.e., as a Kronecker product of two
filters. Consequently, the conventional MVDR spectrum problem is
transformed to one of estimating two filters of much shorter length-
s. Since it has much fewer parameters to estimate, the proposed
method is able to achieve better performance than its conventional
counterpart, particularly when the number of available signal sam-
ples is small. Also presented in this paper is the generalization to the
estimation of the cross-spectrum and coherence function.

Index Terms—Spectral estimation, cross-spectrum, coherence
function, minimum variance distortionless response (MVDR) filter,
Kronecker product.

1. INTRODUCTION

Spectral estimation, which aims at estimating the spectral density of
a random signal from a sequence of observation samples, is widely
used in applications such as speech analysis, radar, sonar, ultrasound,
to name but a few [1–6]. Various spectrum estimation methods have
been developed in the literature and the representative ones include
the periodogram [7], Welch’s method [8], minimum variance dis-
tortionless response (MVDR) technique [9], and the autoregressive
moving average (ARMA) approach [10]. Generally, those method-
s can be broadly classified into two categories, i.e., non-parametric
and parametric ones [11]. The former passes the broadband signal
to be analyzed into a bank of band-pass filters and then computes
the power of every subband filter’s output [3, 12, 13]. In contrast,
the latter assumes an a priori parametric model for the signal, and
the spectral estimation problem is then transformed into one of es-
timating the parameters in the assumed model [11, 14]. Compar-
atively, the parametric methods can achieve more accurate estima-
tion than the non-parametric ones if the signal fits well the assumed
model. However, if the model is not a good representation of the
signal, which is often true in most applications, those methods may
suffer from great performance degradation. In summary, the non-
parametric approaches are generally more robust than the parametric

ones in practice and, therefore, plenty of efforts have been devoted
to their study [3, 12–15].

One of the most well-known non-parametric algorithms is the
Capon’s approach, also known as the MVDR method. It achieves
spectral estimation through a filterbank decomposition, where the
spectrum of a given broadband signal is estimated on a subband ba-
sis [1,9]. The resolution of this method depends on the length of the
subband filters, and a higher resolution can be achieved by increas-
ing the filter length but this will require more data samples (or signal
snapshots) to estimate the signal covariance matrix of a larger size.
In many practical applications, it is required to achieve reliable spec-
tral estimates of high resolution with the constraint that the number
of signal samples is limited at the given time instant [1, 2]. There-
fore, efforts are indispensable to develop robust MVDR estimators
using only a small number of samples.

The Kronecker product tool, which can decompose a long fil-
ter into several short ones, is very appealing for many application-
s [16, 17] such as system identification [18], beamforming [19–21],
time-delay estimation [22], and dereverberation [23]. In this work,
we attempt to apply this mathematical tool to robust spectral estima-
tion and develop an MVDR method using Kronecker product filters.
We first decompose the Fourier vector, which forms the filterbank in
the MVDR, as a Kronecker product of two shorter vectors. As a re-
sult, the spectral estimation subband filter associated with the Fourier
vector can also be expressed as a Kronecker product of two shorter
filters. Consequently, the spectral estimation problem is transformed
to one of estimating two optimal filters, which are achieved through
an alternative least-squares (ALS) strategy. Since the number of pa-
rameters that needs to be estimated is significantly reduced with the
Kronecker product structure, the proposed method can achieve bet-
ter and robust spectral estimation performance than its conventional
counterpart, particularly when the number of available samples is
small. This proposed approach can also be generalized to the esti-
mation of the cross-spectrum and coherence function, which is also
addressed in this paper.

2. CONVENTIONAL MVDR SPECTRUM

The MVDR method performs spectral estimation on a subband basis,
where in every subband an adaptive filter is designed to estimate the
signal spectrum while minimizing the impact of signals from other
subbands [1], [9]. Let us consider K complex-valued linear filters of
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length L:

gk =
[
Gk,0 Gk,1 · · · Gk,L−1

]T
, (1)

k = 0, 1, . . . ,K − 1,

where the superscript T is the transpose operator, and let X(n) be
a zero-mean stationary random process at the discrete-time index n,
which is the input of these K filters. As a result, the corresponding
outputs are

Yk(n) = gH
k x(n), k = 0, 1, . . . ,K − 1, (2)

where the superscript H is the conjugate-transpose operator and

x(n) =
[
X(n) X(n− 1) · · · X(n− L+ 1)

]T
is a vector of length L containing the L most recent time samples of
X(n). Then, the variance of Yk(n) is

ϕYk = gH
k Rxgk, (3)

where Rx = E
[
x(n)xH(n)

]
is the covariance matrix of x(n), with

E[·] denoting mathematical expectation. The variance ϕYk , with an
appropriate constrained filter gk, is considered as the spectrum of
X(n) at frequency bin k that we denote by SX (ωk), where ωk =
2πk/K.

Consider the matrix of size L×K:

F =
[
f0 f1 · · · fK−1

]
, (4)

where

fk =
1√
L

[
1 eȷωk · · · eȷωk(L−1)

]T
(5)

is the Fourier vector of length L, with ȷ being the imaginary unit. For
K = L, F is the well-known Fourier matrix, which is unitary, i.e.,
FHF = FFH = IL, where IL is the L× L identity matrix. In the
MVDR spectrum, the filter coefficients are chosen so as to minimize
the variance of the filter output subject to the constraint:

gH
k fk = fHk gk = 1. (6)

Under this constraint, the process X(n) is passed through the fil-
ter gk with no distortion at frequency ωk and components at other
frequencies than ωk tend to be attenuated. Mathematically, this is
equivalent to

min
gk

(
ϕYk = gH

k Rxgk

)
s. t. gH

k fk = 1. (7)

We easily find that the optimal filter is

gk =
R−1

x fk

fHk R−1
x fk

. (8)

As a consequence, the spectrum of X(n) at ωk is

SX (ωk) = gH
k Rxgk

=
1

fHk R−1
x fk

. (9)

While it gives pretty satisfactory spectral estimation in practice
with a high resolution by simply increasing the value of L, the MV-
DR approach is required to have a large amount of data in order to
obtain a good estimate of Rx so that its inversion does not lead to
potential problems. In many applications, however, we rarely are in
a such luxury context. Therefore, there is a great need to estimate
related covariance matrices with much less data.

3. PROPOSED APPROACH

3.1. Spectral Estimation

Let us assume that L = L1 × L2. In this case, one can easily check
that fk can be decomposed as

fk = f[1],k ⊗ f[2],k, (10)

where ⊗ is the Kronecker product and

f[1],k =
1√
L1

[
1 eȷωkL2 · · · eȷωkL2(L1−1)

]T
, (11)

f[2],k =
1√
L2

[
1 eȷωk · · · eȷωk(L2−1)

]T
(12)

are vectors of lengths L1 and L2, respectively.
Because of the particular structure of fk, we propose to use the

same structure for the K linear global filters, i.e.,

gk = g[1],k ⊗ g[2],k, (13)

where g[1],k and g[2],k are two complex-valued sub-filters of lengths
L1 and L2, respectively. We can rewrite (13) as

gk =
(
IL1 ⊗ g[2],k

)
g[1],k (14)

=
(
g[1],k ⊗ IL2

)
g[2],k, (15)

where IL1 and IL2 are the identity matrices of sizes L1 × L1 and
L2 × L2, respectively.

In the context of the proposed approach, the constraint on the
global filter in (6) becomes(

g[1],k ⊗ g[2],k

)H (
f[1],k ⊗ f[2],k

)
= gH

[1],kf[1],k × gH
[2],kf[2],k = 1. (16)

Therefore, we will always take gH
[1],kf[1],k = gH

[2],kf[2],k = 1, so that
(16) is satisfied.

Closed-form expressions for the two sub-filters g[1],k and g[2],k

do not exist but good approximations can be derived thanks to the al-
ternative least-squares (ALS) strategy [16, 19]. When g[2],k is fixed,
we write the variance of Yk(n) as

ϕYg[2],k
= gH

[1],k

(
IL1 ⊗ g[2],k

)H
Rx

(
IL1 ⊗ g[2],k

)
g[1],k

= gH
[1],kRx,g[2],k

gH
[1],k, (17)

where

Rx,g[2],k
=

(
IL1 ⊗ g[2],k

)H
Rx

(
IL1 ⊗ g[2],k

)
(18)

is a covariance matrix of size L1 × L1; and when g[1],k is fixed, we
write the variance of Yk(n) as

ϕYg[1],k
= gH

[2],k

(
g[1],k ⊗ IL2

)H
Rx

(
g[1],k ⊗ IL2

)
g[2],k

= gH
[2],kRx,g[1],k

gH
[2],k, (19)

where

Rx,g[1],k
=

(
g[1],k ⊗ IL2

)H
Rx

(
g[1],k ⊗ IL2

)
(20)
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is a covariance matrix of size L2×L2. Therefore, the optimal global
filter is derived iteratively from

min
g[1],k

(
ϕYg[2],k

= gH
[1],kRx,g[2],k

g[1],k

)
s. t. gH

[1],kf[1],k = 1, (21)

min
g[2],k

(
ϕYg[1],k

= gH
[2],kRx,g[1],k

g[2],k

)
s. t. gH

[2],kf[2],k = 1, (22)

whose solutions are

g[1],k =
R−1

x,g[2],k
f[1],k

fH[1],kR
−1
x,g[2],k

f[1],k
, (23)

g[2],k =
R−1

x,g[1],k
f[2],k

fH[2],kR
−1
x,g[1],k

f[2],k
. (24)

As a result, at iteration i, the global MVDR filter is

g
(i)
k = g

(i)

[1],k ⊗ g
(i)

[2],k, (25)

where

g
(i)

[1],k =

(
R

(i)
x,g[2],k

)−1

f[1],k

fH[1],k

(
R

(i)
x,g[2],k

)−1

f[1],k

, (26)

g
(i)

[2],k =

(
R

(i)
x,g[1],k

)−1

f[2],k

fH[2],k

(
R

(i)
x,g[1],k

)−1

f[2],k

, (27)

and the iteratively-updated covariance matrices are given by

R(i)
x,g[2],k

=
(
IL1 ⊗ g

(i−1)

[2],k

)H

Rx

(
IL1 ⊗ g

(i−1)

[2],k

)
, (28)

R(i)
x,g[1],k

=
(
g
(i)

[1],k ⊗ IL2

)H

Rx

(
g
(i)

[1],k ⊗ IL2

)
. (29)

Since the covariance matrices Rx,g[2],k
and Rx,g[1],k

are only of
sizes L1×L1 and L2×L2, respectively, they require much less data
to estimate than the original covariance matrix Rx (of size L1L2 ×
L1L2).

The spectrum of X(n) at ωk (and iteration i) with the global
MVDR filter is

S(i)
X (ωk) =

1

fH[1],k

(
R

(i)
x,g[2],k

)−1

f[1],k

(30)

=
1

fH[2],k

(
R

(i)
x,g[1],k

)−1

f[2],k

.

3.2. Estimation of the Cross-Spectrum and Coherence Function

The method developed in the previous subsection can also be extend-
ed to the estimation of the cross-spectrum and coherence function.
Let us assume that we have two zero-mean stationary random signals
X1(n) and X2(n) with respective spectra SX1 (ωk) and SX2 (ωk).
As explained above, we can design two global MVDR filters:

g
(i)
p,k = g

(i)

p,[1],k ⊗ g
(i)

p,[2],k, p = 1, 2, (31)

where g
(i)
1,k (resp. g(i)

2,k) of length L is used for the estimation of the

spectrum of X1(n) [resp. X2(n)], i.e., S(i)
X1

(ωk) [resp. S(i)
X2

(ωk)],
at ωk (and iteration i).

Let Y1,k(n) and Y2,k(n) be the respective outputs of the filter-
s g1,k and g2,k of length L. With the conventional approach, the
cross-spectrum between X1(n) and X2(n) at frequency ωk is de-
fined as [11], [14]

SX1X2 (ωk) = E
[
Y1,k(n)Y

∗
2,k(n)

]
, (32)

where the superscript ∗ is the complex-conjugate operator. Develop-
ing the previous expression, we get

SX1X2 (ωk) = gH
1,kRx1x2g2,k, (33)

where Rx1x2 = E
[
x1(n)x

H
2 (n)

]
is the L × L cross-correlation

matrix between the two vectors x1(n) and x2(n) of length L, which
are defined similarly to x(n). Therefore, with our approach, the
cross-spectrum between X1(n) and X2(n) at frequency ωk (and it-
eration i) is given by

S(i)
X1X2

(ωk) =
(
g
(i)
1,k

)H

Rx1x2g
(i)
2,k. (34)

The coherence function between the two signals X1(n) and
X2(n) is defined as [11], [14]

γX1X2 (ωk) =
SX1X2 (ωk)√

SX1 (ωk)SX2 (ωk)
. (35)

Therefore, with the proposed approach, this coherence function is
estimated as follows:

γ
(i)
X1X2

(ωk) =
S(i)
X1X2

(ωk)√
S(i)
X1

(ωk)S(i)
X2

(ωk)
(36)

=

(
g
(i)
1,k

)H

Rx1x2g
(i)
2,k√(

g
(i)
1,k

)H

Rx1g
(i)
1,k ×

(
g
(i)
2,k

)H

Rx2g
(i)
2,k

,

where Rx1 and Rx2 are the covariance matrices of x1(n) and
x2(n), respectively.

4. SIMULATIONS

In this section, we study the performance of the proposed method
and compare it to the conventional MVDR method. We consider a
synthetic signal, which consists of multiple sinusoids, i.e.,

X(n) = 4 cos(0.42πn) + 4 cos(0.44πn)

+ 6 cos(0.46πn) + 6 cos(0.47πn) + V1(n), (37)

where V1(n) is a zero-mean white gaussian noise. To estimate the
spectrum of the above signal, the number of the complex-valued lin-
ear filters, i.e., the value of K, is set to K = 1000. The length of
each filter, i.e., the value of L, is set to L = 100. The proposed
method is implemented with L1 = L2 = 10. The filter g[2],k is ini-
tialized as f[2],k, and only two iterations are performed, i.e., I = 2.

For comparison, we also show performance of the Welch av-
erage periodogram method. The covariance matrix Rx is estimat-
ed with the forward and backward method [24, 25]. The esti-
mates given by the MVDR and the proposed method are divided
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Fig. 1. Spectrum estimates with the Welch average periodogram,
MVDR, and proposed methods with: (a) 150 snapshots and (b) 500
snapshots. The results are from averaging over 100 Monte Carlo
trails.

Fig. 2. MSC estimation performance of the MVDR and proposed
methods with difference number of snapshots: (a) NMSE of peaks
and (b) NMSE of off-peaks spectrum. The results are averaged over
1000 Monte Carlo trails.

by L. For the MVDR method, the diagonal loading factor is set as
δ = trace (Rx) × 10−6/L [26]. We consider two cases, where
the number of available snapshots is 150 and 500, respectively. Fig-

ure 1 shows plots of the averaged results over 100 Monte Carlo sim-
ulations. As seen, the Welch average periodogram method has a
much lower resolution than the other two studied methods in all cas-
es. When N = 500, both MVDR and the proposed method produce
good performance and the estimated spectra are close to the ground
truth. The underlying reason is that, with N = 500, the covariance
matrix is well estimated. However, when N = 150, both methods
suffer great performance degradation because the estimate of the co-
variance matrix is biased. In this case, the amplitude of the spectral
estimate with MVDR is much smaller than the ground truth. In com-
parison, the proposed method has better overall performance, which
achieves both comparable estimation accuracy and high resolution.
The reason, as explained in Section 3, is that the dimensions of the
Rx,g[1],k

and Rx,g[2],k
matrices are much smaller than that of Rx;

consequently, less data are needed to achieve reliable estimates.
We then compare the magnitude squared coherence (MSC) esti-

mation performance of the proposed method with MVDR with dif-
ferent number of snapshots. We consider the synthetic signal:

Y (n) = cos(0.42πn+ ϕ1) + cos(0.44πn+ ϕ2)

+ cos(0.46πn+ ϕ3) + cos(0.48πn+ ϕ4) + V2(n),
(38)

where ϕk ∈ [0, 2π) is a random phase and V2(n) is a zero-mean
white gaussian noise with variance σ2 = 0.01. The MSC between
X(n) and Y (n) is expected to be 1 at ω = 0.42π, 0.44π, 0.46π and
0 at other frequencies. We consider the normalized mean-squared
error (NMSE) of those three peaks and the NMSE of off-peak spec-
trum. The number of available snapshots varies from 300 to 500
with an increment of 20. Figure 2 shows plots of the averaged re-
sults over 1000 Monte Carlo simulations. As seen, the performance
of both algorithms decrease as the number of available snapshot-
s decreases. In comparison, the proposed method yields both more
accurate peak height estimation and lower off-peaks spectrum power
estimation, indicating that the proposed MSC estimator outperforms
the conventional MVDR.

5. CONCLUSIONS

This paper deals with the problem of spectral estimation. It present-
ed an MVDR method based on the Kronecker product decomposi-
tion, where the spectral estimation filter is expressed as a Kroneck-
er product of two short filters, which are estimated with the ALS
method. Since it has much fewer parameters to estimate, the de-
veloped method is able to achieve better performance than its con-
ventional counterpart when the number of available signal samples
is small, which was justified by both theoretical analysis as well as
simulation results. We also showed how to generalize the proposed
spectral estimation method to the estimation of cross-spectrum and
coherence function.
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