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Abstract—Sampling for linear inverse problems is the active
selection of partial observations so that the entire physical signal
with linear model can be well recovered. In this paper, we
will propose a fast sampling algorithm for large-scale linear
inverse problems. Specifically, assuming that the field signal f is
represented by a linear model f = ΦΦΦg, it can be estimated from
partial noisy samples via an unbiased least-squares (LS) method,
whose expected mean square error (MSE) depends on chosen
samples. First, we formulate an approximate MSE problem, and
then prove it is equivalent to an optimization of a principle
submatrix of ΦΦΦΦΦΦ> indexed by sample set. By enlarging the
submatrix greedily, we solve the proposed combinatorial problem
with simple matrix-vector multiplications, leveraging a matrix
inverse lemma. To further reduce complexity, we reuse results in
the previous greedy step for warm start, so that candidates can be
evaluated via lightweight vector-vector multiplications. Extensive
experiments show that our proposed sampling method achieved
the least execution time and the best performance compared to
state-of-the-art schemes, especially for large-size scenarios.

Index Terms—Fast sampling, linear inverse problem, greedy
approach

I. INTRODUCTION

Due to limited sensing resources and expensive acquisition
cost, sampling is the core problem in signal processing to
choose a subset of locations to sense physical fields, such
as temperature, humidity and transportation congestion [1]–
[3], so that the unobserved signal can be recovered in high
accuracy [4]–[7]. Assuming that the physical signal is linearly
modelled by f = ΦΦΦg with low-dimensional parameters [8], it
can be recovered from partial noisy observations by solving
a linear inverse problem using the least square (LS) method,
whose mean square error (MSE) is a function of matrix ΦΦΦ and
the sampling set [9]. Sampling for linear inverse problem is to
decide the noisy observations actively such that the formulated
MSE can be reduced.

To solve the combinatorial sampling problem, [10] relaxed
the nonconvex optimization into a convex one, so that it can be
solved by fast interior point methods. However, this relaxation
performed poorly when the sampling budget was very small.
To achieve better MSE performance, greedy algorithms were
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designed to select sample locations one-by-one by solving dif-
ferent local optimization problems [11]–[13]. Authors in [11]
proposed one near-optimal sampling algorithm for the frame-
potential-based cost function, which preserved theoretically
bounded performance. In parallel, authors in [12] used the
worst-case of MSE function—E-optimality criterion [14]—as
objective to choose samples greedily. However, in each greedy
search, it required computing eigenspace of the selected partial
matrix, which is expensive when the eigenspace dimension is
large. Recently, [13] proposed a fast algorithm to minimize an
approximate MSE criterion, which still suffered from multiple
matrix inverse computations and thus is not practical for large-
scale linear inverse problems.

Towards fast and effective sampling, in this paper we
propose a greedy approach with simple vector-vector mul-
tiplications. Specifically, first we formulate an approximate
MSE problem using a small spectral shift, and then prove it
is equivalent to an optimization of a principle submatrix of
ΦΦΦΦΦΦ> indexed by samples. We devise a fast greedy algorithm
for this problem without matrix inverse computation based on
a matrix inverse lemma [15]. Using computed results in the
previous greedy step for warm start, we design an accelerated
strategy to evaluate each candidate via simple vector-vector
multiplications. Extensive experiments show that our proposed
scheme is the fastest one among popular sampling algorithms
for large-scale linear inverse problems, along with the best
MSE performance.

Key Notations: Denote by bold lowercase letters (x) and
bold uppercase letters (A) vectors and matrices, respectively.
The entries in matrix A is aij . Matrix I is an identity matrix,
whose dimension depends on context. AS1,S2 is a sub-matrix
of matrix A with rows and columns indexed by S1 and S2
respectively. AS,S is simplified to AS .

II. PRELIMINARIES

In the physical signal processing domain, the high-
dimensional field signal f ∈ RN is conventionally modelled
by a linear equation [16]:

f = ΦΦΦg, (1)

where g ∈ RK is the parameter vector where K � N .
Given limited measuring resources, we select M samples

out of N total signal, where M � N . We first define a
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sampling matrix C ∈ {0, 1}M×N associated with sampling
set S ⊂ {1, . . . , N} as follows [17]:

cij =

{
1, if j = S{i};
0, otherwise. (2)

Thus, the observed noisy signal can be expressed as

y = Cf + n = CΦΦΦg + n ∈ RM , (3)

where n is an i.i.d Gaussian noise signal with covariance
matrix σ2I.

Using observed partial signal y, we can estimate the original
signal f by solving a linear inverse problem. Specifically,
assuming the coefficient matrix CΦΦΦ is full column rank1, the
parameter vector can be estimated as ĝ = (CΦΦΦ)†y, where †
denotes the pseudo inverse computation, and ĝ is an unbiased
estimator of g with minimum variance [9]. Given ĝ, the
estimated target signal is f̂ = ΦΦΦĝ.

Since (CΦΦΦ)† =
[
(CΦΦΦ)>(CΦΦΦ)

]−1
(CΦΦΦ)> for full column-

rank matrix, the expected MSE of this least square (LS)
solution is [17]

MSE(ĝ) = E
(
‖ĝ − g‖22

)
= σ2Tr

[
(CΦΦΦ)>(CΦΦΦ)

]−1
. (4)

Hence, a MSE-based sampling problem for placing sensors
is to select M samples to minimize the expected MSE2. This
is also called A-optimality in experimental design [14]:

min
C

Tr
[
(CΦΦΦ)>(CΦΦΦ)

]−1
=

K∑
k=1

1

λk
(5)

where λK ≥ · · · ≥ λ2 ≥ λ1 are the eigenvalues of
matrix (CΦΦΦ)>(CΦΦΦ) [17]. Since CΦΦΦ has full-column rank
and (CΦΦΦ)>(CΦΦΦ) is positive semi-definite (PSD) by definition,
(CΦΦΦ)>(CΦΦΦ) has the property that λk > 0,∀k.

III. FAST SAMPLING STRATEGY TO MINIMIZE AN
APPROXIMATE MSE PROBLEM

In this section, we at first propose an augmented A-
optimality criterion as our sampling objective. Then, we
propose to mitigate the large matrix inverse in each greedy
step based on matrix inverse formula. For fast sampling, we
propose one strategy to reduce the computation burden based
on warm starts. At last, we will analyze the complexity of our
proposed sampling algorithm.

A. Proposed Sampling Objective

First, we propose a modified A-optimality sampling crite-
rion that closely approximates the original problem (5) by
adding a small constant shift:

min
C

Tr
[
(CΦΦΦ)>(CΦΦΦ) + µI

]−1
=

K∑
k=1

1

λk + µ
(6)

1One necessary but not sufficient condition of rank(CΦΦΦ) = K is M ≥ K
[18].

2A-optimality formulation minimizes the expected MSE directly, while
other cost functions, like E-optimality or D-optimality criterion, minimize
proxies of MSE [14].

where µ > 0 is a small shift parameter. This shifted sampling
objective was also adopted in sensor placement [13] and graph
sampling [17]. We will present a faster algorithm minimizing
this objective than ones in [13] and [17] in this paper.

It can be proven that the modified optimization (6) has
the same optimal solution(s) if (ΦΦΦΦΦΦ> + µI)S replaces
(CΦΦΦ)>(CΦΦΦ) + µI in (6). We formally state this in the
following proposition:

Proposition 1: Denote the eigenvalues of matrix
(CΦΦΦ)>(CΦΦΦ) by λ1 ≤ λ2 ≤ · · · ≤ λK , and assume
rank(CΦΦΦ) = K. When |S| = M ≥ K, an optimal
sampling set for problem (6) is also optimal to the following
optimization:

min
S

Tr
[
(ΦΦΦΦΦΦ> + µI)S

]−1
(7)

where the relationship between C and S is defined in (2).
Proof : When M = K, matrix CΦΦΦ is a square matrix, so

the eigenvalues of (CΦΦΦ)>(CΦΦΦ) and (CΦΦΦ)(CΦΦΦ)> = (ΦΦΦΦΦΦ>)S
are the same. Therefore, problem (6) and (7) have equivalent
optimal solution; When M > K, assume first that the
singular value decomposition (SVD) of matrix CΦΦΦ ∈ RM×K

is CΦΦΦ = UΣΣΣV> where U ∈ RM×M and V ∈ RK×K

are orthogonal left and right eigenvectors respectively. The
singular value matrix ΣΣΣ ∈ RM×K has the form:

ΣΣΣ =


σ1

. . .
σK

0

 (8)

where σk 6= 0,∀k, since rank(CΦΦΦ) = K and M > K.
Then, the eigenvalues of (CΦΦΦ)>(CΦΦΦ) = VΣΣΣ>ΣΣΣV> are

{σ2
1 , · · · , σ2

K}, where λk = σ2
k > 0,∀k. And, the eigen-

values of matrix (ΦΦΦΦΦΦ>)S = (CΦΦΦ)>(CΦΦΦ) = UΣΣΣΣΣΣ>U>

are {0, . . . , 0︸ ︷︷ ︸
M−K

, λ1, . . . , λK}, which indicates the eigenvalues of

(ΦΦΦΦΦΦ>)S + µI are

{µ, . . . , µ︸ ︷︷ ︸
M−K

, λ1 + µ, . . . , λK + µ} (9)

Therefore,

Tr
[
(ΦΦΦΦΦΦ>)S + µI

]−1
=
M −K

µ
+

K∑
k=1

1

λk + µ
(10)

where λk + µ > 0 since µ is strictly positive and λk > 0.
Combined with equation (6), we will know that

Tr
[
(ΦΦΦΦΦΦ>)S + µI

]−1
=
M −K

µ
+ Tr

[
(CΦΦΦ)>(CΦΦΦ) + µI

]−1
whose left part can be rewritten as equation (7).

Notice that i) M , K and µ are fixed constants not affected
by optimization, and ii) optimization variables C in (6) or S in
(7) have the same degrees of freedom. We can thus conclude
that optimal solutions to (6) and to (7) are the same. �

Remark: This formulation was also derived using Neumann
series theorem [19] for sampling of bandlimited graph signals,
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where ΦΦΦ is formed using the first K orthogonal eigenvectors
of a combinatorial graph Laplacian matrix in [17]. In contrast,
in this paper ΦΦΦ is a general measurement matrix for modelling
physical filed, which in general does not have the orthogonal
property. Thus, we derive the more general result differently
here.

B. Greedy Algorithm without Matrix Inversion
Given that the sampling problem (7) is combinatorial in

nature, we employ a greedy approach to optimally choose one
sample at a time. Specifically, assuming that we have obtained
set St after t iterations, to decide the (t + 1)-th sample, we
solve the following local optimization problem:

min
i∈Sc

t

Tr
[
(ΦΦΦΦΦΦ> + µI)St∪{i}

]−1︸ ︷︷ ︸
f(St∪{i})

(11)

where S0 = ∅.
If we compute the objective directly to evaluate each can-

didate solution i ∈ Sct , we have to perform matrix inversion,
with complexity at most O(M3). To mitigate large matrix
inversion, we introduce the next greedy strategy based on one
matrix inverse formula [15].

For notation simplicity, we first define Q = ΦΦΦΦΦΦ> + µI.
Since matrix Q is symmetric, with appropriate permutation,
its sub-matrix QSt∪{i} can be expressed as

QSt∪{i} =

[
QSt QSt,{i}

Q{i},St qii

]
=

[
QSt pt,i

p>t,i qii

]
, (12)

where pt,i = QSt,{i} ∈ Rt.
Matrix inverse Q−1St∪{i} in equation (11) can be obtained

using Q−1St via the matrix inversion formula [15]:

Q−1
St∪{i} =

[
Q−1
St + h−1

i Q−1
St pt,ip

>
t,iQ

−1
St −h−1

i Q−1
St pt,i

−h−1
i p>t,iQ

−1
St h−1

i

]
(13)

where hi = qii − p>t,iQ
−1
St pt,i is a scalar.

Therefore,

f(St ∪ {i}) = Tr
(
Q−1St

)
+ h−1i Tr

(
Q−1St pt,ip

>
t,iQ

−1
St

)
+ h−1i

= f(St) + h−1i ‖Q
−1
St pt,i‖22 + h−1i

Because f(St) is a constant not affected by the selection of
candidate i, during the (t+ 1)-th greedy step given input St,
the sampling problem (11) can be simplified as:

min
i∈Sc

t

h−1i ‖Q
−1
St pt,i‖22 + h−1i

s.t. hi = qii − p>t,iQ
−1
St pt,i; pt,i = QSt,{i}

(14)

where Q−1St is already computed during the previous iteration.
Compared to solving problem (11), optimizing problem

(14) needs to compute matrix-vector product Q−1St pt,i with
complexity O(t2), given known Q−1St .

To optimize problem (14), we can compute Q = ΦΦΦΦΦΦ>+µI
once with complexity O(KN2) and then query its partial
entries qii and pt,i for greedy evaluation. Next, we will
propose to compute the involved elements on the fly inside
greedy search without first computing Q and further reduce
the evaluation complexity.

Algorithm 1 Fast MSE-based sampling (FMBS)
Input: ΦΦΦ = [φφφ1,φφφ2, . . . ,φφφN ]>, sample size M and µ
Initialization: S = ∅

1: Compute qii = ‖φφφi‖22 + µ,∀i
2: Select the first node by i∗ = argmaxiqii
3: Update S ← S ∪ {i∗}
4: While |S| < M
5: ∀i ∈ Sc, compute

If |S| = 1
pi = φφφ>i∗φφφi and ri = 1

qi∗i∗
pi

else
α = p>i ri∗/hi∗ and β = φφφ>i∗φφφi/hi∗

ri =

[
ri + αri∗ − βri∗
−α+ β

]
pi = [p>i βhi∗ ]>

end If
hi = qii − p>i ri

6: Select i∗ = arg min
i∈Sc

h−1i ‖ri‖22 + h−1i

7: Update S ← S ∪ {i∗}
8: end While
9: Return S

C. Evaluation Complexity Reduction

We first write input matrix ΦΦΦ = [φφφ1,φφφ2, . . . ,φφφN ]>, where
φφφ>i is the i-th row in matrix ΦΦΦ. Then we can compute qii as

qii = δ>i Qδi = δ>i ΦΦΦΦΦΦ>δi + µ = ‖φφφi‖22 + µ (15)

The value of pt,i can be obtained via

pt,i = QSt,{i} = C(St)(ΦΦΦΦΦΦ>+µI)δi = C(St)ΦΦΦφφφi+µC(St)δi

where δi is the i-th column of identity matrix I, and C(St)
is the sampling matrix corresponding to set St, defined in
equation (2).

Based on the definition of sampling matrix,

C(St)ΦΦΦφφφi = ΦΦΦSt,:φφφi = [φφφSt{1}, . . . ,φφφSt{t}]
>φφφi (16)

and
µC(St)δi = 0 (17)

since i ∈ Sct .
Using (15) to (17), we can simplify optimization (14) to the

following

min
i∈Sc

t

h−1i ‖rt,i‖
2
2 + h−1i

s.t. hi = ‖φφφi‖22 + µ− p>t,irt,i;

rt,i = Q−1St pt,i;

pt,i = [φφφSt{1}, . . . ,φφφSt{t}]
>φφφi

(18)

where hi and pt,i are computed from input ΦΦΦ without first
computing Q compared to equation (14). However, this formu-
lation still require matrix-vector multiplications for evaluating
one candidate.
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISONS OF DIFFERENT SENSOR

PLACEMENT METHODS

Method Convex [10] / SparSenSe [20] FrameSense [11] MNEP [12]
Complexity O(icN

3) / O(isN
3) O(N3) O(NMK3)

Method MPME [12] fastMSE [13] FMBS
Complexity O(NMK2) O(NMK2) O(NM2)

Suppose that the optimal sample in step t is i∗. Then St =
St−1 ∪ {i∗}. For candidate node in unsampled set i ∈ Sct , we
can write

pt,i = [ΦΦΦ>St−1,: φφφi∗ ]>φφφi = [p>t−1,i φφφ>i∗φφφi]
> (19)

Thus, using computed result pt−1,i in last greedy step as
warm start, the computation of pt,i only requires once vector-
vector multiplication φφφ>i∗φφφi. Further, for i ∈ Sct ,

rt,i = Q−1St pt,i = Q−1St−1∪{i∗}pt,i

=

[
Q−1St−1

+ h−1i∗ rt−1,i∗r
>
t−1,i∗ −h−1i∗ rt−1,i∗

−h−1i∗ r>t−1,i∗ h−1i∗

] [
pt−1,i
φφφ>i∗φφφi

]
=

[
rt−1,i + h−1i∗ rt−1,i∗r

>
t−1,i∗pt−1,i − h−1i∗ φφφ

>
i∗φφφirt−1,i∗

−h−1i∗ r>t−1,i∗pt−1,i + h−1i∗ φφφ
>
i∗φφφi

]
=

[
rt−1,i + αrt−1,i∗ − βrt−1,i∗

−α+ β

]
(20)

where
α = h−1i∗ p>t−1,irt−1,i∗ (21)

β = h−1i∗ φφφ
>
i∗φφφi (22)

and
hi∗ = qi∗i∗ − p>t−1,i∗rt−1,i∗ (23)

Remark: Based on equations (20) to (23), for computing
rt,i, we need to reuse the computed warm starts in the last
greedy step hi∗ , rt−1,i and pt−1,i and compute two new
vector-vector multiplications, i.e., p>t−1,irt−1,i∗ and φφφ>i∗φφφi.

Therefore, according to equations (19) and (20), the com-
putations of pt,i and rt−i only require four vector-vector
multiplications for evaluating one candidate. We write the
complete greedy procedure in Algorithm 1, given matrix ΦΦΦ
as input, where subscript t is abbreviated for simplicity.

D. Complexity Analysis

Given sampling budget M and the number of unsampled
candidates O(N), the complexity of the proposed method
is O(NM2), because the complexity of vector-vector mul-
tiplications in each greedy search is at most O(M). We
call this method Fast MSE-based Sampling (FMBS). We
compare the proposed method with the following popular
methods: convex relaxation-based (Convex) [10], sparse-aware
sensor selection (SparSenSe) [20], FrameSense [11], minimum
nonzero eigenvalue pursuit (MNEP) [12], maximal projection
on minimum eigenspace (MPME) [12] and fast MSE pursuit-
based (fastMSE) sampling [13]. The computational complexi-
ties of those methods and the proposed FMBS are illustrated in
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Fig. 1. Mean MSE of different sampling algorithms in terms of sample
budget, where the left measurement matrix ΦΦΦ is generated from model 1 and
the right one is generated from model 2.

TABLE II
EXECUTION TIME FOR DIFFERENT SAMPLING METHODS IN TERMS OF

GIVEN BUDGET M , WHEN N = 1000 AND K = 100.

100 105 110 115 120
Convex [10] 23.69 23.60 23.35 23.14 22.63

FrameSense [11] 0.225 0.222 0.222 0.222 0.223
MNEP [12] 45.50 53.47 61.41 69.27 77.10
MPME [12] 0.090 0.093 0.099 0.104 0.112

fastMSE [13] 0.071 0.072 0.077 0.079 0.085
FMBS 0.064 0.067 0.071 0.075 0.082

Table. I, where some results are borrowed from [12] and [13].
The parameter ic is the iteration number of the interior-point
method used in paper [10], which is typically tens. Similarly,
is is the iteration number in the SparSenSe method. Table. I
shows that our proposed algorithm has the lowest theoretical
complexity. Corresponding empirical execution time and per-
formance comparisons will be discussed in Section IV.

IV. EXPERIMENTATION

In this section, we will present extensive experimental re-
sults to evaluate the performance and efficacy of the proposed
FMBS method. The measurement matrix ΦΦΦ ∈ RN×K in
simulations can be generated from the following models [12]:

Model 1: ΦΦΦ ∈ R1000×100 is a Gaussian random matrix with
i.i.d. components φij ∼ N (0, 1), and the variance of the noise
σ2 = 1;

Model 2: ΦΦΦ ∈ R1000×100 is a Bernoulli random matrix with
i.i.d. components φij ∼ B(1, 1.5) with B representing the
Binomial distribution, and the variance of the noise σ2 = 1;

In our paper, we compute the averaged MSE value for each
sampling algorithm via [12]:

MSE =
1

L

L∑
i=1

Tr
[
(CiΦΦΦi)

>(CiΦΦΦi)
]−1

(24)

where L is the number of Monte-Carlo simulations and Ci is
the sampling matrix obtained by different sampling methods
at the i-th Monte-Carlo simulation.

We simulated the algorithms listed in Table. I for perfor-
mance and execution time comparisons. The parameter µ
was set to be 10−4 for the proposed method and fastMSE
method. Fig. 1 demonstrates the mean MSE performance of
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TABLE III
EXECUTION TIME FOR DIFFERENT SAMPLING ALGORITHMS WITH FIELD

SIZE N = 1000 AND K = M .

100 200 300 400 500
MNEP [12] 46.11 386.1 1258 2882 5444
MPME [12] 0.093 0.659 1.831 4.376 7.86

fastMSE [13] 0.085 0.567 1.450 2.898 4.69
FMBS 0.069 0.318 0.768 1.340 1.95

TABLE IV
EXECUTION TIME FOR DIFFERENT SAMPLING METHODS WITH VARYING N

AND M = K = 10%N .

2e3 4e3 6e3 8e3 1e4
MPME [12] 0.873 7.24 26.2 68.8 156

fastMSE [13] 1.035 8.46 31.2 80.2 171
FMBS 0.863 6.84 22.4 53.0 103

all simulated algorithms after 10 trails. Fig. 1 validates that the
proposed FMBS achieved the same performance as fastMSE
method, which was better than all other competing popular
methods, especially when the sampling budget was small. As
stated after equation (6), fastMSE sampling optimized the
problems (6) directly by greedy search, which has the same
greedy solution as solving problem (7).

To evaluate experimental complexities of different methods,
we recorded the execution time of different sampling methods
under model 1, and illustrated the results in Table. II, where
the best results are marked in bold. For this simulation, all
experiments were performed on a desktop with Intel Core i7-
9700 and 16GB of RAM on Windows 10 for counting time
(in seconds). Table. II shows that the proposed FMBS cost the
least sampling time for all simulated sampling budgets, includ-
ing the method fastMSE with the same MSE performance.

Further, we recorded the sampling time of MNEP, MPME,
fastMSE and FMBS sampling methods on measurement ma-
trix generated from model 1 with size N = 1000, but
with varied K. Convex and FrameSense sampling were not
simulated since their performance were not competitive. We
set M = K to fulfill the full column-rank requirement.
The averaged execution time is presented in Table. III, which
indicates the proposed FMBS was the fastest one among all
simulated schemes.

At last, for sampling signals in large-scale problems, we
performed relatively fast methods MPME and fastMSE as
comparisons, where the size of target signal N was varying
from 2 × 103 to 104, and sampling budget M is set to be
10%N . The dimension of parameter vector was K = M .
Sampling time results of simulated methods were presented
in Table. IV, where the best results were marked in bold. It
can be observed from Table. IV that our proposed method had
the least sampling time in large-scale problems.

V. CONCLUSION

In this paper, we proposed a fast sampling method for large-
scale linear inverse problems. Specifically, assuming the field
signal f is modelled by a linear model f = ΦΦΦg, it can be

estimated from partial noisy samples via an unbiased least-
square (LS) method, whose expected mean square error (MSE)
is a function of measurement matrix ΦΦΦ and sample set. We
formulated an approximate MSE problem, and then proved it
is equivalent to a problem of a sample-dependent principle
submatrix of ΦΦΦΦΦΦ>. We proposed a fast greedy algorithm us-
ing simple vector-vector multiplications via leveraging matrix
inverse lemma and greedy warm starts. Extensive experiments
have validated superiority of our proposed method compared
to existing popular methods.
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