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Abstract—This paper presents the Reassignment Vector Phase
Difference Estimator (RVPDE), which gives noise robust relative
phase estimates of oscillating transient signals in high noise levels.
Estimation of relative phase information between signals is of
interest for direction of arrival estimation, source separation and
spatio-temporal decoding in neurology as well as for soundscape
analysis. The RVPDE relies on the spectrogram reassignment
vectors which contains information of the time-frequency local
phase difference between two transient signals. The final estimate,
which is robust to high noise levels, is given as the median over the
local time-frequency area. The proposed technique is shown to
outperform state-of-the-art methods in simulations for high noise
levels. A discussion on the statistical distribution of the estimates
is also presented, and finally an example of phase difference
estimation of visually evoked potentials measured from electrical
brain signals is shown.

Index Terms—time-frequency reassignment, oscillating tran-
sient signals, low SNR, phase estimation, EEG

I. INTRODUCTION

Oscillating transient signals are analyzed in many applica-
tion areas. They are the key structures in ultrasound analysis,
seismic wave detection, vibration signal characterization, and
classification of animal communication signals, e.g. sounds
from birds, bats, and dolphins. Further, transients are signifi-
cant signatures in classification of electrical signals measured
form the human brain, the electroencephalogram (EEG) sig-
nals.

However, such measurements are typically very noisy and
hard to analyze. Time-frequency (TF) representations serve
as the common ground to be optimized for the extraction of
relevant information. State-of-the-art methods aim at increased
concentration of TF components and suppression of cross-
terms using the quadratic class of TF representations [1].
Moreover, the TF reassignment and synchrosqueezing methods
are well known techniques for sharpening and increasing
visualization of TF representations, which also have been
explored for different applications [2]–[7]. We have shown
that a Gaussian envelope oscillatory signal can achieve perfect
TF localization, using a scaled and matched reassignment
technique [8]–[10].

In many fields of audio and soundscape analysis, estimation
of phase differences is needed for directional estimation and
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source separation [11]. Phase synchrony or relative phase
estimations are also of extremely important to decode spatio-
temporal information in multiple areas of neurology [12],
[13]. Scalp-recorded EEG signals have low signal-to-noise
ratios (SNRs), and methods robust to high disturbances are
much needed. We have invented a phase difference estimation
method for oscillatory components in multi-channel EEG
signals [14], [15]. However, this technique relies on known
information of the component envelope shape and has also
shown to be sensitive to high noise levels. In a recent paper, we
presented a novel approach to phase difference estimation for
Gaussian envelope oscillatory components, based directly on
the reassignment vector information [16]. As a continuation,
by further exploring the theory and adding a final step of a
median filter for noise robustness, this paper presents a method
for estimating phase difference between short oscillatory sig-
nals with arbitrary envelope shape, specifically for low SNRs.

Preliminaries of the matched reassigned spectrogram and
cross-spectrogram are presented in section 2 and 3. Section 4
proposes the novel technique of the Reassignment Vector
Phase Difference Estimator (RVPDE), which is first evaluated
as an estimator over TF-bins. The method is also compared to
contemporarily used methods for estimation of relative phase
difference of TF components in signal pairs in section 5.
Penultimately, section 6 presents results of method application
on a set of visually evoked potentials (VEPs) from measured
EEG and final conclusions are given in section 7.

II. REASSIGNED SPECTROGRAM

An oscillating transient signal x(t) is defined as

x(t) = g(t− t0)e
i(ω0t+ϕ0) (1)

where g(t) is the signal envelope, t0 the time location, ω0 the
oscillating frequency and ϕ0 the phase. The short time Fourier
transform (STFT), Fh

x (t, ω), with a window function h(t) is

Fh
x (t, ω) =

∫
x(s)h∗(s− t)e−iωsds (2)

where t denotes time, ω denotes angle frequency and ∗ com-
plex conjugate. Integrals are assumed to range between −∞

2271ISBN: 978-1-6654-6798-8 EUSIPCO 2022



and ∞ unless stated otherwise. To improve the visualisation
of the spectrogram

Sh
x (t, ω) = Fh

x (t, ω)
(
Fh
x (t, ω)

)∗
(3)

reassignment relocates energy to the energy mass centre of
signal components according to

RSh
x (t, ω) =

∫∫
Sh
x (s, ξ)δ

(
t− t̂x(s, ξ), ω − ω̂x(s, ξ)

)
dsdξ

(4)
using the two-dimensional Dirac function. Vector functions for
energy relocation t̂x(t, ω) and ω̂x(t, ω) are defined as

t̂x(t, ω) = t+ ctℜ
(
F th
x (t, ω)

Fh
x (t, ω)

)
(5)

ω̂x(t, ω) = ω − cωℑ

(
F

dh
dt
x (t, ω)

Fh
x (t, ω)

)
(6)

where ℜ(•) and ℑ(•) represent the real and imaginary parts,
and F th

x (t, ω),F
dh
dt
x (t, ω) are the STFTs of the signal x(t), with

t·h(t) and dh(t)/dt as window functions. A matching window
function to the signal envelope, h(t) = g(−t), together with
a suitable choice of constants ct and cω result in perfect
relocations to time and frequency energy centres for arbitrarily
shaped components, [8]–[10].

III. REASSIGNED CROSS-SPECTROGRAM

Expanding the concepts of reassignment to multi-
dimensional data, a pair of signals y1(t) and y2(t) is con-
sidered, containing a transient oscillating component of shape
g(t) phase-shifted between signals, i.e.

y1(t) = ei∆ϕx(t), y2(t) = x(t) (7)

Although left out in this paper, components with non-equal
amplitudes can also be considered, by estimating scaling
constants for reassignment vectors as in [15]. A reassigned
cross-spectrogram between these two signals is defined as

RSh
y1,y2

(t, ω) =∫∫
|Sh

y1,y2
(s, ξ)|δ

(
t− t̂y1,y2

(s, ξ), ω − ω̂y1,y2
(s, ξ)

)
dsdξ

(8)
where Sh

y1,y2
(t, ω) = Fh

y1
(t, ω)

(
Fh
y2
(t, ω)

)∗
. The reassign-

ment vectors are expanded to contain mixed information about
both STFTs of signals as

t̂y1,y2
(t, ω) = t+ ctℜ

(
F th
y1

Fh
y2

+
F th
y2

Fh
y1

)
(9)

ω̂y1,y2
(t, ω) = ω − cωℑ

(
F

dh
dt
y1

Fh
y2

+
F

dh
dt
y2

Fh
y1

)
(10)

where the (t, ω) notation is dropped in the STFTs for concise-
ness [14], [16].

Fig. 1. The cross spectrogram for a pair of noise free and noisy (σe = 2)
signals with four oscillatory components are shown in a and b respectively.
The resulting ∆̂ϕ(t, ω) estimates are shown in c,d and their modulus with
regard to π are shown in e,f. In total, the signal has four components
with t0 = 33, 33, 66, 66, ω0 = π/3, 2π/3, 11π/24, 13π/24 and ∆ϕ =
3π/4, π/4, π/4, 3π/4 with Gaussian shaped envelopes (σ = 12). The
spectrogram was calculated with a Gaussian window (λ = 12).

IV. PHASE DIFFERENCE ESTIMATION

To present the Reassignment Vector Phase Difference Es-
timator (RVPDE) as a method of relative phase difference
between signal components, the phase information inherent
in reassignment vectors F th

x /Fh
x is inquired. As a point of

novelty, one can utilise, regardless of envelope g(t), the frac-
tions in the second addends of (9) and (10) and rearrangment
of terms to construct estimates for the phase difference of the
signals over time and frequency. This can be done without
calculating any new STFTs or quotients as

CR(t, ω) = ℜ
(

F th
y1

Fh
y2

+
F th

y2

Fh
y1

)
= ℜ

(
F th

x

Fh
x

)
2 cos(∆ϕ)

CI(t, ω) = ℑ

(
F

dh
dt

y1

Fh
y2

+
F

dh
dt

y2

Fh
y1

)
= ℑ

(
F

dh
dt

x

Fh
x

)
2 cos(∆ϕ)

(11)

SR(t, ω) = ℑ
(

F th
y1

Fh
y2

− F th
y2

Fh
y1

)
= ℜ

(
F th

x

Fh
x

)
2 sin(∆ϕ)

SI(t, ω) = ℜ

(
F

dh
dt

y1

Fh
y2

− F
dh
dt

y2

Fh
y1

)
= −ℑ

(
F

dh
dt

x

Fh
x

)
2 sin(∆ϕ)

(12)
Combining expressions (11) and (12) forms an angular esti-
mate of a complex quantity in each STFT bin, carrying infor-
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Fig. 2. shows the complex-valued distribution of F th
z /Fh

z at the TF bin
(t0, ω0 + 30π/512), for a one-component signal z(t) = x(t) + n(t) with
TF-centre (t0, ω0) where n(t) is white noise with σe = 1. The signal z(t)
has component centre (t0, ω0) = (100, π/4), σ = 12, and normalized power
over ±3σ of the centre. STFTs were calculated with a Gaussian window h
with λ = 4. The complex valued distribution is shown together with the
marginal distributions over ℜ(F th

z /Fh
z ) and ℑ(F th

z /Fh
z ). The dashed cyan

lines marks the noise-free value F th
x /Fh

x .

mation about the phase difference of the transient oscillating
component in the two signals,

(CR(t, ω) + CI(t, ω)) + i (SR(t, ω)− SI(t, ω)) =

(ℜ
(

F th
x

Fh
x

)
+ ℑ

(
F

dh
dt

x

Fh
x

)
)2 cos(∆ϕ)+

(ℜ
(

F th
x

Fh
x

)
+ ℑ

(
F

dh
dt

x

Fh
x

)
)2i sin(∆ϕ) =

K(t, ω)(cos(∆ϕ) + i sin(∆ϕ)) = K(t, ω)ei∆ϕ

(13)

Then ∆̂ϕ(t, ω) = arg(K(t, ω)ei∆ϕ) results in estimates
of phase difference over TF-bins for signals also possibly
containing multiple arbitrarily formed TF-components in the
TF-domain. An example of phase estimation of a noiseless
multicomponent signal for oscillatory signals with Gaussian
envelopes

g(t) = e−
t2

2σ2 (14)

is shown in Figure 1. Figure 1a and b show the cross-
spectrogram of signals containing four components with dif-
ferent spectral and temporal centres in a noiseless and noisy
(σe = 2) scenario respectively. Figure 1c and d show the
angular phase difference estimate between signals. The method
is clearly successful in calculating separate ∆ϕ in high levels
of added noise, for non-overlapping TF components. Figure
1c and d illustrates one short-coming, that K(t, ω) takes on
negative values, which creates a π angular rotation in the
estimates. This is solved by taking the modulus of the angle
values ∆̂ϕm(t, ω) = mod(∆̂ϕ(t, ω), π) restricting estimates to
an expected range ∆ϕ ∈ [0, π], as in Figure 1 e and f.

A significant improvement with this method is that the
estimation in each bin makes no assertion regarding the shape
of the components as long components in each channel share
envelope g1(t) = g2(t). The applied window shape h(t) could
be arbitrarily chosen and is for now chosen to be Gaussian
defined from

h(t) = 1/(π1/4
√
λ)e−

t2

2λ2 (15)

Fig. 3. (a) shows the distribution of errors for ∆̂ϕ(t, ω), before modulus
and median is taken, in the TF bin (t0, ω0+10π/512) where (t0, ω0) is the
centre point of the components. One can see this the estimate is approximately
normal distributed. (b) shows the variance relation of the phase difference
errors to increasing signal noise variances σ2

e in the same bin.

The quality of ∆̂ϕm(t, ω) for a signal depends on the ratio
of signal to noise for Fourier transforms in each bin. For a
certain component one can use multiple methods to extract a
robust single estimate of phase difference between channels
for a chosen component a. Here the following approach is
chosen,

∆̂ϕa
m = median(∆̂ϕm(t, ω)) (16)

for ta0 − 3
2λ ≤ t ≤ ta0 + 3

2λ and ωa
0 − π/2λ ≤ ω ≤ ωa

0 +
π/2λ where (ta0 , ω

a
0 ) is the maximum of the cross-spectrogram

calculated with Gaussian window as in (15). We define this
method as Reassignment Vector Phase Difference Estimator
(RVPDE).

The reason for taking the median is that the shape of the
complex distribution F th

z /Fh
z for a signal z(t) = x(t) +n(t),

where n(t) is white noise, is non-Gaussian. This result was
analytically derived in [17] and extended in [18]. Thus,
either ℜ(F th

z /Fh
z ) or ℑ(F th

z /Fh
z ) risks not being Gaussian

distributed, as can be seen in an example signal in Figure 2.
Consequently the sum in (13) will not be necessarily Gaussian
distributed when there are high levels of noise. The median
compared to the mean will not be as biased towards the tail
of the distribution.

A mixture of components in the cross-spectrogram leads
to joint components with unknown characteristics and thus
RVPDE estimates become unstable over such bins, see Fig-
ure 1. Using longer or shorter window can mitigate this
effect if components are close in either frequency or time
respectively.

V. SIMULATION & EVALUATIONS

A. Pixel dependance on noise

As an initial measure of how the phase difference estimates
of RVPDE behaves in a single TF-bin in the presence of
noise, Gaussian envelope signal components with TF centre
(t0 = 100, ω0 = π/2), of length 200, with σ = 12,
ϕ0 ∈ U [0, 2π] and ∆ϕ ∈ U [π/8, 3π/8] are simulated with
disturbances by white Gaussian noise of variance σ2

e . The
boundary of ∆ϕ is chosen to reduce the effects of phase
wrapping on analysis. Figure 3a shows a histogram of the
errors of ∆̂ϕ(t, ω) from 1000 realizations with σ2

e = 1, λ = 12
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Fig. 4. (a), (b) and (c) show mean square error (MSE), STD and bias respectively of error of ∆̂ϕa
m for the presented method RVPDE Reassigned Spectrogram

Angle (RSANG), Pearson’s linear correlation (RHO), Phase Lag Index (PLI) and cross-spectrogram phase (XSP) evaluated over multiple SNR-values.

in one bin chosen at (t, ω) = (t0, ω0 + 10π/512), a slightly
higher frequency than the centre of signal component. The
errors are approximately normally distributed which is true
for σ2

e ≤ 2. However for ∆̂ϕm(t, ω) the errors will have an
shifted, non-normal distribution which is problematic.

This problem is accentuated with increasing σ2
e of noise,

and additionally motivates why taking the median of the area
in RVPDE in section 4 is a suitable choice if a method robust
to high power of noise is desired. Figure 3b shows a plot
of estimated variance of errors against the power/variance of
added signal noise. As one can see the variance of errors
increase linearly with power of noise up to a certain level.
This is a maximum since the variance of errors can at most
be a distribution still on the interval [0, 2π].

B. RVPDE compared to commonly used methods

To measure the performance of RVPDE compared to other
commonly used methods for phase difference extraction a
single Gaussian shaped component signal x(t) defined at 200
samples with t0 = 100, ω0 = π/2, ϕ0 ∈ U [0, 2π], σ = 12 and
average power P =

∫ t0+3σ

t0−3σ
x(t)2 dt/6σ = 1 was used. Two

channels y1(t) and y2(t) were constructed according to (7)
with ∆ϕ ∈ U [π/8, 3π/8]. White Gaussian noise at multiple
SNRs, defined as SNR= 10 log10(P/σ2

e), was added. As
an example, the σe in Figure 1 corresponds to SNR= −6.
Simulations were performed 1000 times.

For the novel method RVPDE a Gaussian window with
λ = 12 was applied. To compare the method with previous
developed methods, four other methods are evaluated: Reas-
signed Spectrogram Angle (RSANG) based on (11) and (12)
using identical window as RVPDE but with other assertions
on the shape of component envelope [16], Phase Lag Index
(PLI) [19], Pearson’s linear correlation (RHO) and TF cross-
spectrogram phase (XSP) [1]. For PLI and RHO the measures
were reduced to the temporal interval of ±2.5λ from com-
ponent centre to improve the performance of these methods.
The cross-spectrogram for XSP is calculated using the same
window as in RVPDE. The mean-square-error (MSE), standard
deviation (STD) and bias of ∆̂ϕ for all methods are shown in
Figure 4.

RHO and PLI behave similarly and even though signals
were cropped to improve the performance of these methods
they still perform the worst. XSP shows a good performance
for SNR > 4 but at the boundary bias and STD increase dras-
tically. RSANG and RVPDE, have very similar performances
at higher SNRs. At lower SNR RSANG exhibits a lower bias,
and in turn a powerful increase in STD as SNR decreases
below 1. RVPDE has instead a superior STD with a slightly
increased bias instead. Overall the MSE shows a substantial
improvement for the novel RVPDE at low SNR compared to
the RSANG and state-of-the-art methods.

C. Resolving TF-spatially close components

The robustness of RVPDE to the mixing of components in
the TF-plane is evaulated by simulating the signal pair y1(t)
and y2(t) as defined in section 5.2, but with two-component
signals, a component of interest a and a disturbance compo-
nent b. The two Gaussian components have σa = σb = 12,
ta0 = tb0 = 100 and the same power. Furthermore ϕ0 and
∆ϕ share the uniform distributions from section 5.2 for both
component a and b but are independently realised. Frequency
centres are defined as ωa

0 = 2π/4 and ωb
0 = 2π/4+∆ω where

∆ω = kω0, k = 0, 0.05, 0.1, ..., 0.4 and the signal is realised
1000 times at SNR= 1 with white Gaussian noise.

STD and bias for ∆̂ϕa
m by RVPDE with a matched window

(λ = σ), a shorter window (λ = σ/2) and a longer window
(λ = 2σ) are shown in Figure 5. One can see in Figure 5 that
increasing the width of the window used in RVPDE decreases
acceptable ∆ω before bias and STD of errors increase substan-
tially. A tunability of RVPDE for investigating components
of particular frequency and shape is made possible by this
characteristic. An analogue simulation with temporally close
components will show a opposite relation for the robustness
of RVPDE. In this case shorter windows will increase the
robustness with regards to temporally close components.

VI. EXAMPLE WITH REAL DATA

As real data example of the application of phase difference
estimation of visually evoked potential (VEP) EEG generated
from a flickering light of 20 Hz presented to the subject
is examined. Electrodes were spaced according to the 10-20
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Fig. 5. a) STD and b) bias of phase difference estimates of a main component
in a signal pair also containing a second disturbance component as a plot
against decreasing frequency separation ∆ω, for multiple window lengths in
RVPDE.

system at positions Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, Pg1 and Pg2. Oscillations
of 20 Hz are expected at the optical cortex, and propagate
forward through the scalp. O2 is placed to the right of the
optical cortex and a positive phase difference lag to other
electrodes should in theory be observed.

Data, with a length of 15s, was captured at a sample rate
256 Hz, with flickering light between 5 and 10 seconds. Before
analysis, data was temporally cut to the range of the flickering
light (5-10s). Data was normalized over the remaining 5s to
equate component amplitudes in each channel. The evaluation
is restricted to RVPDE, RSANG and PLI as the other methods
failed to perform in interpretable ways. The results of RVPDE
and RSANG were calculated with λ = 12 and component
centres were chosen manually as the strongest peak in the
cross-spectrogram for O2 channel in the frequency band 18-
22 Hz. For PLI the signal was cropped to ±3λ from the
empirically found peak. Figure 6 shows phase estimates ∆̂ϕ
between O2 and the electrode in examination. PLI seems
to capture a reasonable phase difference with a delay lag
from O2. However RVPDE estimates larger positive phase
differences, whereas RSANG completely fails to capture these
expected positive phase differences.

Fig. 6. Topographic map of channels showing estimated phase difference
using methods RVPDE, RSANG and PLI. Red circle shows O2 electode.

VII. CONCLUSION

We have presented the novel RVPDE method for robust
multi-channel phase difference estimation at low SNRs. The
RVPDE outperforms commonly used methods within EEG
in terms of mean square errors for SNRs < 5. The ad-
vantages of RVPDE are that the method is not restricted to
specific spectrogram window shapes and does not make any
assumptions regarding the envelope shapes of components.
Therefore the applied spectrogram window can be adjusted

for higher performance in presence of TF-spatially close
disturbance components. Future approaches aim to utilize
multitaper reassignment techniques and exploration of RVPDE
phase estimates in feature based machine learning models.
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