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Abstract—The maximum signal-to-noise ratio (SNR) beam-
former is useful in a wide range of applications to enhance speech
signals of interest and attenuate as much as possible the noise.
But robust implementation of this beamformer is challenging in
practical applications as it requires to know the signal and noise
covariance matrices. This paper investigates how to simplify the
beamformer for use in small-spacing microphone arrays. Indeed,
with small-spacing arrays, a practical parametric model can
be used to model the covariance matrix of the observations,
which is closely related to the front-to-back ratio (FBR) in
differential beamforming. With this parametric model, we derive
two simplified maximum SNR beamformers, which depend on
the signal power spectral density (PSD) only. We then propose an
estimator based on Frobenius-norm minimization to estimate the
PSD. Since PSDs are usually easier to estimate than covariance
matrices, the developed beamformers have great advantage over
its traditional counterparts in terms of implementation in practi-
cal systems. The performance of the developed beamformers are
validated in a simulated classroom environment.

Index Terms—Microphone arrays, adaptive beamforming,
maximum SNR beamformer, parametric covariance matrix mod-
eling.

I. INTRODUCTION

Adaptive beamforming with microphone arrays has been
widely used in a large number of speech applications for
desired signal acquisition and extraction over the last few
decades [1]–[3]. The most representative algorithms on this
topic include the minimum variance distortionless response
(MVDR) [4]–[8], maximum signal-to-noise (SNR) [9]–[11],
and Wiener [12]–[17] beamformers.

Generally, the implementation of adaptive beamformers
requires to estimate the signal and noise statistics and/or
direction of arrival information of the sources of interest. For
example, the MVDR beamformer depends on the covariance
matrix of the array observations or noise and steering vector of
the desired source. The maximum SNR beamformer depends
on the covariance matrices of the desired signal and the noise.
The Wiener beamformer is a function of the covariance matri-
ces of the observations and desired source. Since it is difficult
to reliably estimate the signal and noise statistics in practical
acoustic environments due to the nonstationary nature of the
speech as well as the noise signals, adaptive beamformers
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often suffer from severe performance degradation, i.e., signal
cancellation and distortion in practice [18]–[21].

In some applications, the spatial distributions of the desired
and/or noise sources are approximately known. For example, in
classroom public address (PA) systems, if the sound acquisition
microphone array is placed on the top of the teaching desk,
the desired source (e.g., a teacher) and the interference sources
(e.g., students) are from different sides of the array. With such
a priori information and small-spacing microphone arrays, a
parametric model can used to model the covariance matrix
of the observations as in differential microphone arrays [22],
[23]. With this model, we derive two simplified maximum
SNR beamformers, which depend on the signal power spectral
density (PSD) only. We then present a PSD estimator based
on the Frobenius-norm minimization. Since it is easier and
more reliable to estimate PSD than covariance matrices, the
developed beamformers are preferred in practical systems.
Simulations in a classroom environment also demonstrate
the advantages of the developed beamformers in terms of
performance as compared to two widely used beamformers.

II. SIGNAL MODEL, PROBLEM FORMULATION, AND
COVARIANCE MATRIX MODELLING

We consider to use a small-spacing uniform linear array
(ULA) consisting of M omnidirectional microphones to pick
up a speech signal of interest in some noise field. The
interelement spacing of the ULA is denoted as δ. In the rest
of this paper, we use (·)T and (·)H to denote, respectively, the
transpose and conjugate-transpose of a vector/matrix, E [·] to
denote mathematical expectation, and tr {·} to denote the trace
of a matrix. Using the short-time Fourier transform (STFT),
we can express the mth channel signal in the STFT domain
as [24]

Ym(k, n) = Xm(k, n) + Vm(k, n), m = 1, 2, . . . ,M, (1)

where k is the frequency-bin index, n is the frame index,
and Xm(k, n) and Vm(k, n) are the STFTs of the desired
speech and noise signals, respectively. The signals in (1) can
be rearranged into the following vector form:

y(k, n) ≜
[
Y1(k, n) Y2(k, n) · · · YM (k, n)

]T
(2)

= x(k, n) + v(k, n),

where the speech signal vector x(k, n) and the noise vector
v(k, n) are defined in a similar way as y(k, n). We assume that
x(k, n) and v(k, n) are of zero mean and they are uncorrelated.
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Consequently, the covariance matrix of y(k, n) can be written
as

Cy(k, n) = E
[
y(k, n)yH(k, n)

]
(3)

= Cx(k, n) +Cv(k, n),

where Cx(k, n) and Cv(k, n) are the covariance matrices of
x(k, n) and v(k, n), respectively.

The objective of this work is to recover the noise-free speech
signal at any one of the microphones in the ULA. Without loss
of generality, we consider to formulate the problem as one of
recovering the noise-free speech signal at the first microphone,
i.e., X1(k, n), which will be called the desired signal. The
estimation of X1(k, n) is achieved by applying a beamforming
filter, h(k, n), to the observation vector, y(k, n), i.e.,

Z(k, n) = hH(k, n)y(k, n), (4)

where Z(k, n) is the beamformer’s output. Then, the problem
becomes one of identifying an optimal filter so that Z(k, n)
is a good or an optimal estimate of X1(k, n). A number of
algorithms have been developed over the past few decades
and the typical ones include the MVDR, maximum SNR,
and Wiener beamformers. Generally, implementation of those
beamformers relies on the estimation of the signal and noise
covariance matrices and/or the steering vector for the desired
source, which is difficult to achieve in practical acoustic condi-
tions. Inaccurate estimation of those parameters often leads to
severe performance degradation [18]–[21]. Fortunately, with
proper array configuration, some of the parameters can be
modeled with some a priori information, which would signifi-
cantly simplify adaptive beamformers as will be demonstrated
in this work.

To start with, we consider the farfield case and neglect
the gain difference among channels. In this case, the steering
vector for the ULA in the STFT domain can be written as [24]

dθ(k) =
[
1 e−ȷ2πfk

δ
c cos θ · · · e−ȷ(M−1)2πfk

δ
c cos θ

]T
, (5)

where θ ∈ [0, π] is the source incident angle, ȷ is the imaginary
unit, fk denotes the frequency corresponding to the kth STFT
bin, and c is the sound speed in air. Furthermore, we assume
that the noise source is located in the back-half plane of the
ULA while the desired source is located in the front-half plane
of the ULA. In this case, the covariance matrix of y(k, n) in
(3) can be modelled as

Cy(k, n) = λX1(k, n)ΓF(k) + λV1(k, n)ΓB(k), (6)

where λX1
(k, n) and λV1

(k, n) are the PSDs of the desired
signal and the noise at the first microphone, respectively, and

ΓF(k) =

∫ π/2

0

dθ(k)d
H
θ (k) sin θdθ, (7)

ΓB(k) =

∫ π

π/2

dθ(k)d
H
θ (k) sin θdθ. (8)

The elements of the two matrices ΓF(k) and ΓB(k) can be
expressed in analytic forms [22], [23]. The model in (6) is
very useful in many application scenarios. For example, in

a typical classroom, the teacher may stand on one side of
the desk while the students sit on the other side. A uniform
linear microphone array is placed on the desk to pick up the
sound from the teacher and meanwhile attenuating the sounds
and noise from the student side. In such scenarios, (6) is a
reasonable model for modeling the covariance matrix of the
array observation vector.

III. SIMPLIFIED MAXIMUM SNR BEAMFORMERS WITH
KNOWN COHERENCE MATRICES

In this section, we derive two simplified maximum SNR
beamformers corresponding to the model described previously.

A. Derivations of Simplified Maximum SNR Beamformers

The subband input SNR at the nth frame is defined as

ξin(k, n) ≜
λX1

(k, n)

λV1(k, n)
. (9)

With the beamforming output given in (4) and the parametric
model given in (6), the subband output SNR of the beamformer
at the nth frame can be written as

ξout [h(k, n)] =
hH(k, n)Cx(k, n)h(k, n)

hH(k, n)Cv(k, n)h(k, n)
(10)

= ξin(k, n)
hH(k, n)ΓF(k)h(k, n)

hH(k, n)ΓB(k)h(k, n)
.

Using (9) and (10), we deduce that the subband SNR gain of
the beamformer is

G [h(k, n)] =
ξout [h(k, n)]

ξin(k, n)
=

hH(k, n)ΓF(k)h(k, n)

hH(k, n)ΓB(k)h(k, n)
, (11)

which corresponds to the well-known front-to-back ratio
(FBR) [25], [26]. Therefore, the simplified maximum SNR
beamformer with the assumed model in (6) is the maximum
FBR beamformer, which is of the following form:

hFBR(k, n) = α(k, n)t1(k), (12)

where α(k, n) is any non-zero complex number and t1(k) is
the eigenvector corresponding to the maximum eigenvalue of
Γ−1
B (k)ΓF(k). Note that α(k, n) has no impact on the subband

SNR gain of the maximum FBR beamformer, but it may
have significant impact on speech distortion and the fullband
SNR gain because the observation signals at different frames
and frequency bins are processed independently, leading to
inconsistent values of α(k, n) at different frames and frequency
bins. Consequently, it is necessary to determine the proper
value for α(k, n). In what follows, we will present two
methods to determine this value. To simplify the notation, we
will drop the index k in the rest of this section.

The first method to determine the value of α(n) is through
minimizing the mean-squared error (MSE) between the desired
signal, X1(n), and its estimate, Z(n), i.e.,

J [hFBR(n)] ≜ E
[∣∣hH

FBR(n)y(n)−X1(n)
∣∣2] (13)

= Jd [hFBR(n)] + Jn [hFBR(n)]
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where Jd [hFBR(n)] ≜ E
[∣∣hH

FBR(n)x(n)−X1(n)
∣∣2] is the

term associated with speech distortion and Jn [hFBR(n)] ≜
E
[∣∣hH

FBR(n)v(n)
∣∣2] is the variance of the residual noise.

Taking the derivative of J [hFBR(n)] with respect to α∗(n)
and forcing the result to zero, one can obtain

αMMSE(n) =
λX1

(n)tH1 ΓFu1

λX1(n)ζ0 + λV1(n)ζ1
, (14)

where u1 is the first column of the M × M identity matrix
IM , ζ0 ≜ tH1 ΓFt1, and ζ1 ≜ tH1 ΓBt1. Substituting the result
in (14) into (12) gives the first maximum FBR beamformer:

hFBR,MSE(n) =
λX1(n)t1t

H
1 ΓFu1

λX1
(n)ζ0 + λV1

(n)ζ1
, (15)

which depends on the PSDs of speech and noise. Another
convenient way to write (15) is

hFBR,MSE(n) =
ξin(n)t1t

H
1 ΓFu1

ξin(n)ζ0 + ζ1
, (16)

which is a function of the subband input SNR only.
In some situations, we want to make a tradeoff between

the degree of speech distortion and the amount of noise
attenuation. Following the idea from the so-called speech
distortion weighted multichannel Wiener filter (SDW-MWF)
[12], [13], [27], we propose to determine the value of α(n) by
minimizing the following cost function:

Jµ [hFBR(n)] = Jd [hFBR(n)] + µJn [hFBR(n)] , (17)

where µ ≥ 0 is a weighting coefficient. We deduce that the
optimal value of α(n) is

αµ(n) =
λX1

(n)tH1 ΓFu1

λX1(n)ζ0 + µλV1(n)ζ1
. (18)

Substituting (18) into (12), we obtain the second maximum
FBR beamformer:

hFBR,µ(n) =
λX1(n)t1t

H
1 ΓFu1

λX1
(n)ζ0 + µλV1

(n)ζ1
(19)

=
ξin(n)t1t

H
1 ΓFu1

ξin(n)ζ0 + µζ1
. (20)

If the value of µ is equal to one, we have hFBR,µ=1(n) =
hFBR,MSE(n). Consequently, the first maximum FBR beam-
former can be viewed as a particular case of hFBR,µ(n).

B. Power Spectral Density Estimation Based on Frobenius-
Norm Minimization

Implementation of the derived simplified beamformers re-
quires the power spectral densities (PSDs) of the speech and
noise signals. There are numerous PSD estimation methods
in the literature and they can be broadly categorized into
single-channel [28]–[32] and multichannel methods [33]–[39].
The single-channel ones are generally based on the sparsity
property of the speech signal in the time-frequency domain and
stationarity assumption of the noise, while the multichannel
methods utilize the spatial coherence of the desired source
and the noise. In this work, we will adopt the principle in the

multichannel approach and propose the following estimation
method.

The unknown parameter vector is defined as λ(n) ≜[
λX1

(n) λV1
(n)

]T
. We propose to estimate the signal’s

PSD by minimizing the Frobenius-norm of the error matrix
between the sample covariance matrix of the observations
Sy(n) and the modelled covariance matrix Cy(n) in (6), i.e.,

g [λ(n)] = ∥Sy(n)− λX1(n)ΓF − λV1(n)ΓB∥2F . (21)

Taking the derivative of g [λ(n)] with respect to λX1(n) and
λV1

(n), respectively, and setting the results to zeros, we obtain
a system of linear equations:[

tr
{
Γ2
F

}
tr {ΓFΓB}

tr {ΓFΓB} tr
{
Γ2
B

} ]
︸ ︷︷ ︸

A

[
λ̂X1

(n)

λ̂V1
(n)

]
︸ ︷︷ ︸

λ̂(n)

=

[
tr {ΓFSy(n)}
tr {ΓBSy(n)}

]
︸ ︷︷ ︸

b(n)

, (22)

where λ̂X1
(n) and λ̂V1

(n) are the estimates of λX1
(n) and

λV1
(n), respectively. Using the fact that

∣∣tr{B1B
H
2

}∣∣2 ≤
tr
{
BH

1 B1

}
tr
{
BH

2 B2

}
where the equality holds if and only

if B1 = B2, one can prove that the determinant of A in (22)
is greater than zero. So, A is invertible and the estimate of
λ(n) is obtained as λ̂(n) = A−1b(n). Since λX1

(n) and
λV1

(n) represent PSDs, their estimates should be nonnegative.
So, in real implementation, if the estimate λ̂X1

(n) or λ̂V1
(n) is

negative, one can apply the half-wave rectifying idea to force
the negative estimate to be zero.

IV. SIMULATIONS

In this section, we will evaluate the performance of the two
developed beamformers in a simulated classroom environment.

A. Setup

The length, width and height of the simulated classroom
are, respectively, 6.00 m, 4.00 m, and 3.00 m. The walls,
ceiling and floor of the room are assumed to have the same
reflection coefficient, 0.8. With this setup, the reverberation
time of the room is approximately 300 ms. The desired
source (simulate a teacher) is located at (5.30,2.10,1.60) and
four noise sources (simulate four students) are located at
(1.80,0.50:1.00:3.50,1.60), respectively. The desired source is
a loudspeaker playing back a female speech signal recorded in
an anechoic chamber. The signal length is approximately 30 s
and the sampling rate is 16 kHz. The noise source signals are
computer generated white Gaussian sequences. We consider to
use a small ULA with M = 3 omnidirectional microphones
whose locations are (4.50:−0.02:4.46,2.10,1.60), respectively.
The array is placed in such a way that the desired source is
located in the endfire direction of the ULA. We consider the
microphone close to the desired source as the first microphone
and also the reference. The acoustic impulse responses from
the sources to the microphones are simulated with the well-
known image-model method [40].
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Fig. 1. The top panel plots the spectrogram (in dB) of the observation signal at
the first microphone when the input SNR is 10 dB and the bottom panel plots
the subband input SNR (in dB) calculated with the proposed PSD estimator.

B. Implementation

The signals are partitioned into overlapping short frames
with a frame length of 512 and an overlapping ratio of 75%. A
Hamming window of length 512 is applied to every frame and
the windowed frame is then transformed to the STFT domain
using the fast Fourier transform (FFT) of size 512. The sample
covariance matrix of the observations, Sy(k, n), is obtained
with the following recursive averaging method:

Sy(k, n) = ηSy(k, n− 1) + (1− η)y(k, n)yH(k, n), (23)

where 0 ≤ η < 1 is a forgetting factor. In our simulations, we
set the forgetting factor as η = 0.85. With the estimated PSDs,
we can compute ξin(k, n) according to (9). In order to control
the level of speech distortion in the beamformer’s output, the
value of ξin(k, n) is restricted to the range between 10−2 and
104.

C. Results

Figure 1 plots the spectrogram of the first microphone signal
at a 10-dB input SNR and the subband input SNR calculated
with the estimated PSDs. As seen, the estimated subband input
SNR has very small values in the noise-only periods while
larger values in the periods where speech is present. This
visualization shows that the proposed estimation method works
pretty well on estimation of the PSDs of the speech and noise
signals.

Now, we consider to compare the developed beamform-
ers with the supercardioid (SC) [24], [26] and conventional
maximum SNR [11] beamformers. SC is a fixed beamformer
that maximizes the FBR and has a unit response at the
direction θ = 0. The maximum SNR beamformer relies on the
covariance matrices of speech and noise. Since the noise in
our simulations is stationary, we estimate the noise covariance
matrix with the observations at the first 40 noise-only frames
and keep it constant during the entire processing. The speech
covariance matrix is then obtained by subtracting the estimated
noise covariance matrix from the sample covariance matrix
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Fig. 2. The output SNR and PESQ of all considered beamformers as a function
of the input SNR. The dashed line in the right panel represents the PESQ value
of the first microphone signal.

of the observations. Figure 2 plots the fullband output SNR
(see [24] for its definition) and the Perceptual Evaluation of
Speech Quality (PESQ) [41], [42] of the studied beamformers
as a function of the input SNR. To calculate the PESQ,
the clean speech source signal is assumed to be known and
used as the reference signal. From Fig. 2, one can see that
the SC beamformer yields the lowest output SNR and the
lowest PESQ under all the studied input SNR conditions.
Both the two developed beamformers outperform the two
baseline beamformers in terms of the output SNR and PESQ
in this simulated classroom environment. This validates the
effectiveness of the covariance matrix model in (6) as well as
the developed beamformers. We also observe that between the
two developed beamformers given in, respectively, (16) and
(20), the second one with µ = 50 leads to the best results
in both evaluation measures. It indicates that setting a proper
value of µ can help control the amount of noise attenuation
and the overall speech quality.

V. CONCLUSIONS

Implementation of the conventional maximum SNR beam-
former requires reliable estimates of the signal and noise co-
variance matrices, which are challenging to obtain in practical
acoustic environments. In this paper, we first presented a para-
metric model with small-spacing microphone arrays, which
exploits the a priori information of the spatial distributions
of the desired and the noise sources to model the covariance
matrices. Two simplified maximum SNR beamformers were
then deduced, which require only the signal and noise PSDs.
Since PSDs are easier to estimate than the covariance matrices,
the deduced maximum SNR beamformers are more convenient
to use than their traditional counterparts in practical applica-
tions. Moreover, simulations demonstrated that the developed
beamformers are able to produce better performance in terms
of SNR and PESQ improvement in comparison with the
conventional maximum SNR and supercardioid beamformers.
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