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Abstract—Time synchronization of the nodes of an acoustic
sensor network is important to be able to apply acoustic beam-
forming for signal extraction. While former solutions perform the
tasks of synchronization and beamformer coefficient estimation
in cascade, we here show how they can be carried out jointly.
The key observation is that the spatial covariance matrices of
the speakers contain all information necessary to carry out
both tasks. We simulate a meeting transcription system with
asynchronous sensor nodes and show that the joint treatment
not only saves some computations, but also leads to improved
sampling rate offset estimation and beamforming. However, the
final transcription performance turns out to be insensitive to
those improvements.

Index Terms—sampling rate offset, spatial covariance matrix,
synchronization, beamforming, ad-hoc acoustic sensor networks,
speech enhancement

I. INTRODUCTION

It is well known that the spatial distribution of the sensor
nodes in a wireless acoustic sensor network (WASN) offers the
opportunity for improved signal capture. This can be achieved
by acoustic beamforming, whose full potential, however, can
only be leveraged if the sampling clocks of the sensor nodes
are synchronized [1]. Several techniques for sampling rate
offset (SRO) estimation solely from the observed speech
signals have been proposed [2]–[4]. They typically rely on
observing the drift over time of the correlation or coherence
of the microphone signals in different channels.

On the other hand, acoustic beamforming also relies on the
estimation of cross-channel signal statistics in order to com-
pute the beamformer coefficients. It therefore seems natural to
investigate if some of the computations for SRO estimation and
acoustic beamforming can be shared. A first indication that this
is indeed possible is the observation in [5] that the dominant
eigenvector of the spatial covariance matrix (SCM) of the
microphone signals is directly related to the SRO. However,
while in that publication a single sinusoidal source signal in
white noise was considered, we here look at the practically
more relevant setup of a meeting transcription system.

In a meeting scenario, the signal captured by the WASN is
the speech signal of the participants, which may be corrupted
by environmental noise. Participants are located at different
spatial positions, e.g., are sitting around a table, they speak
alternatingly, and sometimes more than a single speaker is
active at the same time. This all poses additional challenges

to SRO estimation and acoustic beamforming. Some of those
challenges have been addressed in [3] and [6].

Usually, a cascade of synchronization and beamforming is
proposed. The first task can be achieved, in its simplest form,
by coarsely time-aligning stream segments in regular intervals
to compensate for a sampling time offset (STO) between the
channels, disregarding any SRO [7]. In more sophisticated
approaches the channels are resampled to additionally com-
pensate for an SRO [8], [9]. For the second task, acoustic
beamforming, state of the art techniques employ a time-
frequency mask estimator to obtain the activity patterns of each
of the speakers in the meeting [10]–[12]. With those masks
speaker-specific SCMs are estimated, from which in turn the
beamformer coefficients are computed. Indeed, it is important
that the SRO is compensated before beamformer estimation,
because it has been shown that an SRO can have an irreversible
detrimental effect on the SCM estimation process [13].

In this contribution we consider SCM estimation and SRO
estimation and compensation jointly. First, a spatial mixture
model is employed to estimate speaker-specific time-frequency
masks [12]. Those are used to estimate the SCMs of the
speakers, from which a matrix of all pair-wise microphone
channel coherences is computed. From this matrix, an SRO
estimate is derived by computing it’s dominant eigenvector.
SRO compensation is achieved by an upstream short-time
Fourier transform (STFT) resampling [14] prior to SCM
estimation. The coefficients of the acoustic beamformers op-
erating on the time-aligned channels can be readily computed
from the above mentioned SCMs. Compared to the cascaded
approach, this joint treatment has two major advantages: the
covariance terms only need to be computed once and outliers
caused by computing the drift between segments originating
from different speakers are avoided. Finally and arguably, the
integrated approach is more elegant.

The paper is organized as follows: In Sec. II, the consid-
ered scenario is presented, followed by the mask-based SCM
estimator in Sec. III. Section IV discusses the SCM-based
SRO estimation including an integrated SRO compensation,
and Sec. V briefly summarizes the source separation using
minimum variance distortionless response (MVDR) beam-
forming. Experiments on simulated meeting data are discussed
in Sec. VI before a brief conclusion is given in Sec. VII.
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II. SCENARIO DESCRIPTION

The scenario at hand is an ad-hoc WASN consisting of
D≥2 devices at fixed, however unknown, positions. Some
devices, e.g., smartphones, may have a single microphone
and some devices, e.g., smart devices like Alexa, may have
multiple microphones. Overall, this results in a set of M
microphones being available. All devices are placed on a table
and record a meeting-like conversation of I speakers, which
sit at fixed positions around the table. Mostly, a single speaker
is active during the conversation. However, the conversation
also includes quiet periods as well as a significant amount of
time with two speakers being active at the same time.

The discrete-time signal recorded by the m-th microphone,
m ∈ {1, . . .M}, is given by

ym[n] =

I∑
i=1

hi,m[n] ∗ xi[n] + vm[n], (1)

with xi[n] being the source signal emitted by the i-th speaker
and vm[n] representing Gaussian sensor noise. hi,m[n] denotes
the room impulse response (RIR) modeling the sound propaga-
tion from the position of the i-th speaker to the position of the
m-th microphone. n corresponds to the discrete-time sample
index. The STFT of the m-th microphone signal is denoted
by Ym(ℓ, k) with frame index ℓ, frequency bin index k, frame
size N and frame shift B.

As proposed in [3] the deviation of the sampling frequency
of the m-th microphone fm[ℓ]= (1+εm[ℓ]) ·fs from the nom-
inal sampling frequency fs is modeled by the time-varying
SRO εm[ℓ]. Additionally, sampling of the microphone signals
will start at different points in time resulting in an STO Tm. We
assume that all STOs are handled by an initial synchronization
procedure, e.g., the one explained in [6]. Consequently, we
will omit the effect of STOs in the following, i.e., Tm=0.
If a device has multiple microphones it is assumed that the
corresponding microphone signals are sampled with the same
sampling frequency (see [15] for a hardware example), i.e.,
these signals show the same SRO.

III. SPATIAL COVARIANCE MATRIX ESTIMATION

As it will be explained later we use speaker-dependent
SCMs for source extraction via beamforming and SRO esti-
mation. To this end a mask-based approach to SCM estimation
is employed here. Let γi(ℓ, k), i ∈ {1, . . . , I}, be a time-
frequency mask indicating the activity of speaker i in time
frame ℓ and frequency bin k and γv(ℓ, k) be the time-frequency
mask of the noise. Furthermore, assume a frame-wise estimate
of the speaker’s activity ai[ℓ]∈{0, 1} to be given. The sensor
noise is assumed to be always active.

The SRO estimator and the beamformer are based on a
block-wise processing. Therefore, both rely on SCMs Ri(ℓ, k)

which are calculated based on blocks consisting of Nw con-
secutive frames:

Ri(ℓ, k)=

ℓ∑
ℓ̃=ℓ−Nw+1

γ2i (ℓ̃, k)·ai[ℓ̃]·Y (ℓ̃, k)·Y H(ℓ̃, k)

ℓ∑
ℓ̃=ℓ−Nw+1

ai[ℓ̃]

, (2)

with Y (ℓ, k)=[Y1(ℓ, k), . . . , Ym(ℓ, k), . . . , YM (ℓ, k)]T corre-
sponding to the stacked STFTs of the microphone signals. The
quadratic weighting of the dyade product in (2), as proposed
for example in [16], has shown improved experimental results
for block-online beamforming compared to a linear weighting.
Accordingly, the noise SCM Rv(ℓ, k) is estimated using
γv(ℓ, k) as mask.

IV. SCM-BASED SRO ESTIMATION AND COMPENSATION

In [3] we proposed the dynamic weighted average coherence
drift (DWACD) method for SRO estimation, which has shown
reliable results for estimating time-varying SROs in a scenario
with speaker changes similar to the meeting scenario at
hand. Here, we extend DWACD by deriving the coherence
drift from speaker-dependent SCMs which are also used for
beamforming as explained later.

A. Dynamic weighted average coherence drift

In the following the basic concept of the DWACD method
is shortly recapitulated on the basis of estimating the SRO
between microphone q and r, i.e., εrq[ℓ] =εq[ℓ]−εr[ℓ]. The
coherence between the microphones q and r is calculated as

Γrq(ℓ, k) = Φrq(ℓ, k)/
√

Φrr(ℓ, k) · Φqq(ℓ, k), (3)

with Φrq(ℓ, k) denoting the power spectral density (PSD) of
the channels r and q which is calculated via the Welch method:

Φrq(ℓ, k) =
1

Nw

ℓ∑
ℓ̃=ℓ−Nw+1

Yr(ℓ̃, k) · Y ∗
q (ℓ̃, k). (4)

The SRO is estimated on the basis of the complex-
conjugated product of two consecutive coherence functions
which is computed as

Prq(ℓ, k) = Γrq(ℓ, k) · Γ∗
rq(ℓ− ℓd, k), (5)

where ℓd corresponds to the temporal distance between the two
coherence functions. Before estimating the SRO, the complex-
conjugated product of consecutive coherence functions is
smoothed via an first-order autoregressive process, resulting
in P̄rq(ℓ, k). Eventually, the SRO is estimated via

ε̂rq[ℓ] = − 1

ℓd ·B
·
(

argmax
λ

|p̄rq(ℓ, λ)|
)
, (6)

where p̄rq(ℓ, λ)=IFFTN

(
P̄rq(ℓ, k)

)
denotes the N -point in-

verse fast Fourier transform (IFFT) of P̄rq(ℓ, k). Note that the
SRO is estimated only every BS frames and therefore Prq(ℓ, k)
is also computed only every BS frames.
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B. SCM-based SRO estimation

Let Φi,rq(ℓ, k) be the PSD of the channels q and r for
the signal of speaker i. By comparing (2) and (4) it can be
seen that Φi,rq(ℓ, k)=(Ri(ℓ, k))r,q holds if only speaker i
is active. Here, (Ri(ℓ, k))r,q corresponds to the r-th row
and q-th column element of the SCM Ri(ℓ, k). Thus, the
coherences Γi,rq(ℓ, k) as well as the products of the coherence
functions Pi,rq(ℓ, k) can be computed speaker-dependently
based on the elements of the SCMs Ri(ℓ, k) via (3) and (5).
This reduces the computational overhead since the speaker-
dependent SCMs Ri(ℓ, k) are also used for beamforming and
no additional speaker-independent coherences Γrq(ℓ, k) need
to be computed.

The speaker-dependent complex-conjugated product of co-
herence functions comes with the advantage that the two co-
herence functions Γi,rq(ℓ, k) and Γi,rq(ℓ−ℓd, k) always belong
to the same source position. Thus, the phase of Pi,rq(ℓ, k) only
depends on the SRO as discussed in [3]. This might not hold
for Prq(ℓ, k) for all blocks due to the speaker changes.

The phase of the coherence Γrq(ℓ, k) is typically too volatile
for accurate SRO estimation when a coherent source is active
in only a few frames that are used to estimate Γrq(ℓ, k). In
the DWACD method, these frequency bins are dominated by
sensor noise, resulting in a small absolute value of the coher-
ence estimate. Hence, these frequency bins get a small weight
when estimating the SRO. However, the speaker-dependent
coherence Γi,rq(ℓ, k) might still have a large absolute value in
this case due to the normalization in (3). To mitigate this effect
we weigh Pi,rq(ℓ, k) by wi(ℓ, k)=

√
w̃i(ℓ, k)w̃i(ℓ− ℓd, k).

Hereby, w̃i(ℓ, k) reflects the average amount of frames within
the ℓ-th block in which speaker i is dominant for frequency
bin k. The decision if speaker i is dominant is made by
quantizing the mask γi(ℓ, k) to zero or one using a threshold
of 0.9.

The speaker-dependent complex-conjugated products of co-
herence functions Pi,rq(ℓ, k) of all active speakers are added
up in blocks where speech from multiple speakers overlaps.
Therefore, the complex-conjugated product of consecutive
coherence Prq(ℓ, k) is given by

Prq(ℓ, k) =
∑

i∈Ã[ℓ]

wi(ℓ, k) · Pi,rq(ℓ, k), (7)

with Ã[ℓ] denoting the set of speaker indices belonging to
the speakers which show a suitable activity in both signal
segments used to calculate Pi,rq(ℓ, k).

Moreover, the SCMs Ri(ℓ, k) provide all values to cal-
culate the complex-conjugated products of coherence func-
tions Prq(ℓ, k) for all channel combinations. Thus, an ex-
tension of the pair-wise SRO estimator to a multi-channel
version, which takes into account the relationships between
all SROs εrq[ℓ], is possible without much overhead. First of
all, all pair-wise estimates of P̄rq(ℓ, k) are combined into a
matrix P̄ (ℓ, k) with (P̄ (ℓ, k))r,q=P̄rq(ℓ, k). As shown in [3]
Prq(ℓ, k) can be decomposed into a signal-to-noise ratio
(SNR)-related weight ψrq(ℓ, k) with zero-phase and a phase

term φrq(ℓ, k)= exp (j2πkℓdBεrq[ℓ] /N) that depends on the
SRO. Utilizing channel 0 as reference for SRO estimation,
P̄ (ℓ, k) can be written as

P̄ (ℓ, k) = diag(φ(ℓ, k)) ·Ψ(ℓ, k) · (diag(φ(ℓ, k)))H , (8)

with (Ψ(ℓ, k))r,q=ψrq(ℓ, k), (φ(ℓ, k))m =φ0m(ℓ, k) and
diag(φ(ℓ, k)) corresponding to a diagonal matrix formed by
the elements of φ(ℓ, k). Thus, φ(ℓ, k) and hence the SRO
can be estimated from the dominant eigenvector of P̄ (ℓ, k) as
proposed in [5]. To this end, after each update of P̄ (ℓ, k), we
perform a single power iteration round to track the dominant
eigenvector d̂(ℓ, k) using its previous estimate as initialization.
Finally, d̂(ℓ, k) is weighted by it’s corresponding eigenvalue
to retain the benefit of the SNR-related weights ψrq(ℓ, k), and
takes the role of P̄rq(ℓ, k) for the SRO estimation procedure
via (6).

As described in [1] and [17], a non-zero SRO can bias
SRO estimates. In addition, it has a detrimental effect on the
SCM estimates as shown in [13]. Therefore, we use the SRO
estimates prior to SCM estimation in an upstream online STFT
resampling [14] procedure.

V. SOURCE EXTRACTION VIA MVDR BEAMFORMING

To extract the signals of the individual speakers from the
recordings we build upon the approach based on a speaker-
dependent, time-varying MVDR beamformer we presented
in [9]. Thereby, the STFT of the signal of the i-th speaker
is estimated as

X̂i(ℓ, k) = WH
i (ℓ, k) · Y (ℓ, k). (9)

The beamformer filter coefficients are calculated according
to [18] with

Wi(ℓ, k) =

(
Φ̃i(ℓ, k)

)−1

·Φi(ℓ, k)

tr

{(
Φ̃i(ℓ, k)

)−1

·Φi(ℓ, k)

} · u, (10)

where tr{·} is the trace operator, and u a unit vector pointing
to a reference microphone. Φi(ℓ, k) denotes the SCM of the
target speaker and Φ̃i(ℓ, k) is the SCM of the interference,
i.e., the SCM of sensor noise and interfering speakers.

Similar as in [9] the SCMs Φi(ℓ, k) and Φ̃i(ℓ, k) are
determined based on the speaker-dependent SCM estimates
Ri(ℓ, k). Φi(ℓ, k)=Ri(ℓ, k) is chosen for the SCM of the
target speaker. The SCM of the interference Φ̃i(ℓ, k) is given
by the sum of the SCM estimates of all interfering sources:

Φ̃i(ℓ, k) = Rv(ℓ, k) +
∑

g∈A[ℓ]\{i}

Rg(ℓ, k). (11)

Here, A[ℓ] corresponds to the set of speaker indices for which
an activity is detected in the ℓ-th block.

To avoid too frequent and too large updates of the beam-
forming coefficients, which can, e.g., deteriorate the perfor-
mance of an automatic speech recognition (ASR) system,
the speaker-dependent SCMs are updated in a block-online
manner. Consequently, Φi(ℓ, k) and Φ̃i(ℓ, k) and, therefore,
the beamforming coefficients Wi(ℓ, k), are only updated once
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Fig. 1. Cumulative distribution function (CDF) of the peak-to-peak value of
the remaining synchronization error after compensating for SROs

per block and are used to filter all frames within each block.
Moreover, the speaker-dependent SCM estimates Ri(ℓ, k) are
smoothed via a first-order autoregressive process.

VI. EXPERIMENTS

The proposed integrated sampling rate synchronization and
beamforming system1 is evaluated on a data set consisting of
100 meetings which are simulated with the meeting generator
from [19]. All meetings are 2min long and use the spatial
setups of the meeting data set from [6]. In 60% of the total
meeting duration a single speaker is active, in 23% of the total
meeting duration two speakers are concurrently active and in
the remaining time no speaker is active. The audio signals are
recorded by D=3 independent devices. Thereby, one device is
equipped with a microphone array having a quadratic layout
with an edge length of 5 cm and the other two devices are
equipped with a single microphone. Furthermore, time-varying
SROs are simulated as described in [3]. The mean value of the
simulated SRO trajectories is randomly drawn from a uniform
distribution in the interval [−100 ppm, 100 ppm].

For mask estimation a complex Angular Central Gaussian
Mixture Model (cACGMM) [20] with time-varying instead of
frequency-dependent mixture weights [21] is employed on the
signals of the microphone array. The cACGMM is initialized
as described in [12] and delivers posterior probabilities, which
are used as the masks γi(ℓ, k) and γv(ℓ, k). As proposed
in [12] frame-wise estimates of the speakers’ activity ai[ℓ]
are gathered by comparing a smoothed version of the prior
probabilities πi[ℓ] of the cACGMM to a threshold. Note that
the device with the microphone array is only needed due to the
usage of an offline version of the cACGMM. By replacing the
cACGMM by a single-channel mask estimator or an online
version of the cACGMM, which works on the resampled
signals from multiple devices, the need for a device with
multiple microphones can be removed. Moreover, the ASR
results are obtained using an acoustic model which is trained
on 16 kHz SMS-WSJ data [22] and configured as described
in [22].

1Code & parametrization are available at https://github.com/fgnt/paderwasn

TABLE I
TRANSCRIPTION PERFORMANCE FOR VARYING MICROPHONE

CONSTELLATIONS AND SYNCHRONIZATION CONDITIONS

Setup SRO Compensation cpWER / %

Clean audio — 5.97

Single-array — 18.57

Array + 2 sync. mics — 11.81

Array + 2 async. mics — 16.08
Array + 2 async. mics DWACD-based 11.88
Array + 2 async. mics SCM-based 11.97

Fig. 1 shows the cumulative distribution function (CDF) of
the absolute value of the peak-to-peak value of the synchro-
nization error eτ [ℓ] which remains after compensating for the
SROs. Here, the remaining synchronization error is defined as

eτ [ℓ]=
N

2
·(ε0m[0]−ε̂0m[0])+

ℓ∑
ℓ̃=1

(ε0m[ℓ̃]−ε̂0m[ℓ̃])·B. (12)

Note that this metric was chosen since it reflects the long-
term synchronization stability better than error metrics directly
applied to the SRO estimates. It can be seen that the proposed
approach to SRO estimation based on speaker-dependent
SCMs is able to outperform the DWACD method. Due to the
large similarity between both approaches, this might be mostly
explained by the fact that the SCMs-based SRO estimator
always combines only coherence functions which belong to
the same source position. Moreover, it can be seen that the
proposed multi-channel extension to the SCM-based SRO es-
timator leads to a small additional gain in performance. Thus,
the multi-channel version of the SCM-based SRO estimator
will be used in the following experiments.

The transcription performance for different microphone
constellations and different synchronization conditions is com-
pared in Table I on the basis of the concatenated minimum-
permutation word error rate (cpWER) [23]. It can be seen
that the cpWER can be improved a lot by using two addi-
tional spatially distributed microphones. However, it becomes
obvious that the sampling rate of the devices have to be
synchronized to make use of the whole potential of the
additional microphones. Compensating for the SROs either
by the proposed integrated sampling rate synchronization or
SRO estimation via the DWACD method with following offline
STFT resampling leads to a transcription performance which
is very close to the one for synchronous devices.

In the meeting scenario at hand the periods in time with
overlapping speech are most crucial for the transcription
performance. Therefore, Fig. 2 visualizes the distribution of
the invasive SDR for these periods in time. It can be seen
that the additional devices are beneficial for the suppression of
concurrent speakers and a compensation for SROs is necessary.
Note that the SDR of the proposed integrated system coincides
with the SDR which can be achieved when synchronous
devices are used. Thus, the small difference in the cpWER
cannot be explained by a reduced suppression of concurrent
speakers.
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the curve for the integrated SCM-based sampling rate synchronization and is
therefore omitted.

VII. CONCLUSIONS

In this paper an integrated sampling rate synchronization
and acoustic beamforming system is introduced. For the
considered meeting scenario the proposed system allows to
make use of the benefits which can be gained from distributed
recording devices enabling a better suppression of interfering
sources via beamforming. However, the sampling rates of
independent recording devices typically differ from each other
prohibiting to utilize the whole potential of beamforming.
Therefore, the proposed system estimates the SRO based on
speaker-dependent SCMs which are also used for beamform-
ing. Beyond reducing the number of computational operations
this also improves the SRO estimation performance by ensur-
ing that the SRO is always estimated based on periods in time
with constant source positions. Eventually, these SROs are
fed back into an upstream online resampling procedure before
SCM estimation. For simulated meeting data it was shown that
the proposed system is able to achieve the same suppression
of concurrent speakers as a system utilizing synchronous
recording devices.
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