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Abstract—In the generalized sidelobe canceller (GSC), the
adaptation control of the adaptive interference canceller (AIC)
should be carefully designed to increase the interference sup-
pression and alleviate the target speech distortion. This paper
proposes a robust update rule for the AIC based on the
assumption that the output of the beamformer follows a time-
varying Gaussian distribution. The coefficients of the AIC and
the variance of the target speech are updated in an iterative
manner under the maximum likelihood criterion. The proposed
method is found to inherently contain a speech detection module
that adaptively adjusts the update rate of the AIC. Computer
simulations under various conditions confirm the robustness
and effectiveness of the proposed control rule over the existing
methods.

Index Terms—Generalized sidelobe canceller, speech enhance-
ment, microphone array.

I. INTRODUCTION

The generalized sidelobe canceller (GSC) is an effective
adaptive beamformer and has been widely employed for
speech enhancement [1], [2]. It consists of three components,
namely, the fixed beamformer (FBF), the blocking matrix
(BM) and the adaptive interference canceller (AIC). The
AIC employs an unconstrained adaptive filter to remove the
interference components from the FBF output. The update rule
of the AIC should be well designed to avoid the instability of
the adaptive filter and the target speech distortion [3]–[11].

The adaptation mode controller (AMC) is very popular
for the control of the AIC adaptation [12], [13]. The AMC
estimates the signal-to-noise ratio (SNR) with the power ratio
between the output of the FBF and the BM, and then the AIC is
updated only if the SNR estimate is lower than the predefined
threshold. However, the tracking capability of the AMC-AIC
is slow, and it is difficult to select a suitable threshold for
different scenarios. The speech presence probability (SPP) is
utilized to control the adaptation of the AIC [14]. However,
unreliable SPP estimate typically occurs in nonstationary noise
environments, leading to an unstable adaptation of the AIC.
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The M -estimate based update rule with variable step size was
proposed for a robust update of the AIC [15], which usually
combines with the speech detection module (SPP or AMC) to
suppress more interference.

The fundamental characteristic of speech signal has also
been considered for the robust control of the AIC, where
update formulas contain an inherent step-size control mecha-
nism. By exploiting the non-Gaussianity of the target speech,
the maximum negentropy (MN) and the maximum kurto-
sis (MK) criterion were proposed in [16], [17]. The MN-
based update rule is more robust to the outliers but with a
heavier computational burden than the MK-based one. The
statistical independence between different signals has been
utilized in [18], [19], and the optimization criterion of the
AIC is generalized as minimizing the mutual information.
However, these methods have to be implemented in a block-
wise way for the robust estimate of statistics, requiring large
computational overheads and making them not suitable for
an online implementation. For instance, the block-wise based
MK-AIC can achieve a satisfactory performance only when
the duration of the block is larger than 0.5 s [20].

In this paper, we propose a new update rule for the AIC
based on a statistical speech model. Specifically, the time-
varying Gaussian source model (TVGSM) is utilized to repre-
sent the non-Gaussian characteristic of the target speech signal.
With this model, the optimal AIC is derived from the max-
imum likelihood (ML) perspective, in which the coefficients
of the AIC and the variance of the target speech are updated
in an iterative way. We show that the online update rules
inherently contain an adaptation control module that slows
down the adaptation of the AIC during target speech periods,
and the proposed ML-AIC can be regarded as the RLS-based
algorithm with a variable forgetting factor. Evaluations under
varying signal-to-interference ratios (SIRs) and reverberation
times demonstrate that the proposed method greatly improves
the speech quality and alleviates speech distortion compared
to the existing adaptation control methods.
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II. SIGNAL MODEL

Consider a microphone array comprising M microphones,
which captures a desired speech signal in a noisy re-
verberant environment. In the short-time Fourier transform
(STFT) domain, the microphone signal vector y(k, n) =
[Y1(k, n), · · · , YM (k, n)]T can be expressed as [2]

y(k, n) = x(k, n) + v(k, n)

= gr(k, n)Xr(k, n) + v(k, n), (1)

where the superscript T denotes the transpose operator, n is
the time index, k is the frequency index, x(k, n) and v(k, n)
denote desired speech and noise signal vectors, respectively,
and Xr(k, n) is the clean speech signal at the reference mi-
crophone. The relative transfer function (RTF) vector gr(k, n)
with respect to the rth microphone is defined as [6]

gr(k, n) =

[
G1(k, n)

Gr(k, n)
, · · · , GM (k, n)

Gr(k, n)

]T
, (2)

where Gi(k, n) is the acoustic transfer function from the
source to the ith microphone. Without loss of generality,
we assume that the environment is slowly time-varying, and
thus gr(k, n) can be approximated as gr(k). We have al-
ready employed the multiplicative transfer function (MTF)
approximation [6] in (1). In highly reverberant environments,
it is necessary to apply the convolutive transfer function
(CTF) approximation [8]. Since the proposed approach can
be extended into the CTF-GSC straightforwardly, we limit
our discussion to the MTF-GSC in this paper. Note that each
frequency bin is treated independently, and we will omit the
frequency index k for brevity.

We extract the target speech by the GSC beamformer

X̂(n) = wH
GSC(n)y(n), (3)

where wGSC(n) = [W1(n), · · · ,WM (n)]T is a filter of length
M . The conventional GSC minimizes the power of the
beamformer output X̂(n) while retaining the target speech
undistorted, which can be expressed as [3], [4]

wGSC(n) = wq −Bwa(n), (4)

where wq ∈ CM×1,B ∈ CM×(M−1), and wa(n) ∈
C(M−1)×1. The fixed beamformer wq aims to steer a beam
into the target direction and generate a reference Yd(n) =
wH

q y(n) for the desired signal, where a matched filter wq =
gr/g

H
r gr is commonly adopted due to its robustness [6], [13].

The blocking matrix B is used to completely block the desired
signal and to provide ideal noise references u(n) = By(n) for
the interference signals, which can be achieved by spanning
the left nullspace of gr, i.e., BHgr = 0, and then formulating
the null towards the direction of the target speech. The AIC
typically employs an unconstrained adaptive filter wa(n) to
eliminate the residual noise in Yd(n) that is correlated with
the noise references u(n).

In practice, the robust adaptation control for the AIC is
indispensable due to the two reasons. Assuming that the
BM completely suppresses the target speech signal, the AIC

should effectively remove the residual noise correlated with
noise references from the output of the FBF. However, during
double-talk, i.e., the presence of the target speech signal and
noise signals, the AIC may suffer from the instability problem.
On the other hand, the BM cannot totally suppress the target
speech signal in practice, and the noise references may contain
target speech leakage. The continuous update of the AIC in
this case would result in the cancelation of the target speech.

In summary, the update of the AIC should be halted or
slowed down during the speech periods to ensure the robust
adaptation. The AMC-based adaptation control mechanism
estimates the SNR through the power ratio between the output
of the FBF and the BM, and then halts the update of the AIC
if the SNR estimate is lower than the predefined threshold.
However, the accuracy of the SNR estimate heavily depends on
the design of the FBF and the BM. In addition, the selection of
a suitable threshold for different scenarios is not trivial. Other
online robust adaptation control mechanisms rely on the more
sophisticated speech detection module which often considers
the nonstationary characteristic of the speech signal, and they
may suffer from performance degradation in nonstationary
noise environments.

III. PROPOSED ML-AIC

The TVGSM has been originally utilized to represent the
non-Gaussian characteristic of the speech signal in many
fields, e.g., source separation, dereverberation and speech
enhancement [21]–[23]. In this paper, we adopt the TVGSM
as the statistical speech model and reformulate the design
criterion of the AIC, where the output of the AIC is ensured to
be more like a speech signal in a statistical sense. The optimal
AIC is derived from the maximum likelihood perspective. We
first present the batch implementation of the proposed update
rule, and then we consider an online version that has a better
tracking capability and renders a real-time implementation.

A. Batch Algorithm

We suppose that the output of the GSC can be modeled
as a zero-mean time-varying Gaussian random variable, i.e.,
X̂(n) ∼ CN (0, λ(n)), where λ(n) is the variance of X̂(n).
Assuming the statistical independence among X̂(n), n =
1, 2, ..., the negative log-likelihood function of beamformer
output X̂(n) is given by

−L(wa, λ) =
∑

n
ln(λ(n)) +

|X̂(n)|2

λ(n)
+ const. (5)

Additionally, we incorporate a regularization term, i.e., the l2-
norm constraint, to the cost function that can penalize the large
coefficients of the AIC and further improve the robustness of
the GSC [18], [20], and hence we obtain the optimization
criterion of the proposed AIC

J = −L(wa, λ) + αwH
a wa, (6)

where α > 0 is a weight for robustness control. The optimal
solution to (6) is derived by minimizing the cost function J ,
but a closed-form solution for the parameters λ(n) and wa
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is not available. We thus choose to iteratively optimize J
by alternately updating λ(n) and wa. By setting the partial
derivatives of J with respect to λ(n) and wa to zero, the
iterative formulas for updating λ(n) and wa are given by

λ(n) = |X̂(n)|2,wML
a = (BHΦỹB+ αIM−1)

−1BHΦỹwq,
(7)

where Φỹ =
∑

n y(n)y
H(n)/λ(n) is the variance-weighted

sample covariance matrix of y(n), and IM−1 is an (M −1)×
(M − 1) identity matrix. The parameters λ(n) and wa can be
initialized to |Y1(n)|2 and a zero vector, respectively.

After inspection of (7), we observe that the proposed ML-
AIC can alleviate the speech distortion by minimizing the
power of output for noise-dominant periods. Specifically, the
noisy signal y(n) is emphasized in Φỹ when λ(n) is small,
i.e., the noise dominant periods. As a consequence, λ(n) can
be considered as a soft voice activity detector (SVAD) that
exploits the non-Gaussianity of the speech signal.

Note that the optimal solution of the conventional AIC is
derived by minimizing the power of X̂(n) [3], [4], which
is denoted as Minimum Power AIC (MP-AIC). In contrast
to MP-AIC, the proposed ML-AIC is derived by forcing the
beamformer’s output as non-Gaussian as possible. A SVAD
λ(n) is intrinsically incorporated into the iterative update rules
for the coefficients of the AIC wML

a , which helps to reduce
contributions of speech dominant periods and thus alleviate
the severe speech distortion.

B. Online Algorithm

We now develop an online version of the ML-AIC, which
renders a low-latency implementation and is capable of up-
dating the AIC coefficients in a frame-by-frame fashion. The
online update rules for the ML-AIC can be derived with the
stochastic gradient-based method. However, the performance
of the adaptive filter may be limited by this means, e.g., the
slow convergence rate and poor tracking capability [25]. To
avoid these problems, we adapt the merit of the recursive least
square (RLS), i.e., exponentially weighting the loss function
at each time slot, to realize the online update of the ML-AIC.
By doing so, the cost function J is thus modified as follows

J (wa(n), λ) =

n∑
l=1

γn−l

(
ln(λ(l)) +

|Yd(l)−wH
a (n)u(l)|2

λ(l)

)
+ αwH

a (n)wa(n), (8)

where 0 < γ < 1 is the forgetting factor. By setting the partial
derivatives of J (wa(n), λ) with respect to λ and wa to zero,
the update rules read

λ(n) = |X̂(n)|2,wML
a (n) = Ψ−1(n)p(n), (9)

where

Ψ(n) = γΨ(n− 1) + 1/λ(n)u(n)uH(n) + αIM−1, (10)
p(n) = γp(n− 1) + 1/λ(n)u(n)Y ∗

d (n). (11)

We find that Ψ(n) is the variance-weighted covariance matrix
with diagonal loading, and p(n) is the variance-weighted cross

correlation vector between Yd(n) and u(n). Although the BM
cannot completely suppress the target speech in practice, the
proposed online ML-GSC can alleviate the speech distortion
due to the incorporation of the adaptive weight factor 1/λ(n).
Specifically, since the term 1/λ(n) is very small when the
speech is dominant, the corresponding contribution of u(n)
and Yd(n) to the adaptation of the AIC is adaptively reduced.
As a consequence, it is expected that the severe speech
distortion can be mitigated.

For real-time applications, it is prohibitive to directly com-
pute the matrix inversion Ψ−1(n) in (9). However, Ψ−1(n)
can be effectively calculated using Sherman-Morrison inverse
formula as

Ψ−1(n) ≈
(
γΨ(n− 1) + 1/λ(n)u(n)uH(n)

)−1

=
1

γ

(
Ψ−1(n− 1)− uΨ(n)u

H
Ψ (n)

γλ(n) + uH(n)uΨ(n)

)
,

(12)

where uΨ(n) = Ψ−1(n−1)u(n). Substituting (10), (11), and
(12) into (9), we obtain the iterative rules of wML

a (n)

wML
a (n) = wML

a (n− 1) + k(n)ξ∗(n), (13)

ξ∗(n) = Y ∗
d (n)− uH(n)wML

a (n− 1), (14)

k(n) =
uΨ(n)

γ′(n) + uH(n)uΨ(n)
, (15)

and γ
′
(n) = γλ(n). Note that the only difference between

the RLS-based ML-AIC and the RLS-based MP-AIC is that
the forgetting factor of the former is automatically adjusted.
With the careful inspection of (13) and (15), we find that λ(n)
actually plays an important role in adjusting the forgetting
factor, and thus adaptively control the adaptation of wa.
Specifically, if that target speech variance λ(n) is large, i.e.,
the speech is dominant at time n, the actual forgetting factor
γ

′
(n) is increased and the adaptation of wa is slowed down,

which helps to mitigate the performance degradation caused
by the speech leakage from the BM.

The accurate estimation of the target speech variance λ(n)
is crucial for the proposed ML-AIC. Supposing that the AIC
has converged to some degree, the target speech variance λ(n)
can be well approximated by the variance of the output of the
GSC. Thus, the variance λ(n) can be estimated recursively as

λ̂(n) = δλ̂(n− 1) + (1− δ)|wH
GSC(n)y(n)|2, (16)

where δ is a smoothing factor with δ ∈ [0, 1]. To make the
estimation more robust, we initialize the estimation of the
variance λ(n) at time n as follows

λ̃(n) = max
(
δλ̂(n− 1) + (1− δ)|wH

GSC(n− 1)y(n)|2, ϵ
)
,

(17)
where ϵ is a small positive constant. As shown in (13) to
(17), the proposed online ML-AIC algorithm can be operated
in a frame-by-frame processing way and the computational
complexity at each frequency bin is O(M2). The computa-
tional burden can be further reduced by resorting to the low-
complexity implementation of the RLS [26], [27], but it is out
of the scope of this paper.
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Fig. 1. Performance comparison under different SIRs. (a) LSD reduction, (b)
∆WB-PESQ. Conditions: T60 = 360 ms.

IV. SIMULATIONS

We now conduct computer simulation to verify the per-
formance of the proposed online ML-AIC. Specifically, we
compare the MP-AIC without adaptation control [6], the
AMC-AIC based on the hard-decision scheme [2] and the
proposed ML-AIC under different reverberation times T60

and SIRs. We consider a uniform linear array of M = 8
microphones with the interelement distance of d = 0.08 m.
The target source is at 0 ◦ and interference is at 60 ◦. Both
the target source and the interference are positioned 2 m
from the center of the linear array. The randomly selected
utterances from the TIMIT [28] are concatenated and a 5 s
silence period is inserted at the beginning to form a single
speech signal having 20 s duration, and there are 10 speech
signals in all. The interference is the babble noise taken from
the NOISEX-92 database [29]. The anechoic speech and noise
signals are then convolved with the corresponding measured
room impulse responses [30] to generate microphone signals.
The spatially uncorrelated Gaussian noise is also added with
an SNR (signal-to-noise ratio) of 30 dB.

The sampling rate is 16 kHz, and we use a 64 ms hamming
window with 75 % overlap. The RTFs are estimated by the
covariance whiten method [34] and then utilized to construct
the FB and the BM. All AICs are updated based on the RLS,
and γ = 0.99. The threshold of the AMC-AIC is empirically
set to 0.8 for all frequency bins, and the AIC is continuously
updated without utilizing the AMC during the first 4 s. For
the proposed ML-AIC, we use δ = 0.8, α = 10−4,Ψ−1(0) =
IM−1,p(0) = [1, · · · , 1]T and ϵ = 10−8.

The speech quality and speech distortion are measured in
terms of wide-band perceptual evaluation of speech quality
(WB-PESQ) [31] and log-spectral distance (LSD) [32]. The
measures are evaluated by comparing the clean speech signal
received at the first microphone, namely X1(n) with its esti-
mate X̂(n). Compared to the LSD, the WB-PESQ complies
better with the subjective speech quality [33]. All measures
are computed by averaging the results regarding the 10 speech
signals as references.

A. Under Different SIRs

We first evaluate the performance of the GSC with different
AICs under various SIRs.We use the reverberation time T60

= 360 ms. The reduction of the LSD and the improvement
of the WB-PESQ of three algorithms are presented in Fig.
1 as a function of SIR. It is observed that under different

160 360 610
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Fig. 2. Performance comparison under different T60s. (a) LSD reduction, (b)
∆WB-PESQ. Conditions: SIR = 0 dB.
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Fig. 3. Spectrograms of (a) clean speech at the reference channel, (b) noisy
signal at the reference channel, (c) speech leakage at noise reference, and
signals enhanced by the (d) proposed ML-AIC, (e) MP-AIC, and (f) AMC-
AIC. Conditions: T60 = 360 ms and SIR = 5 dB.

SIRs, the proposed ML-AIC with the inherent incorporation
of the adaptive forgetting factor can greatly alleviate the speech
distortion problem encountered in the conventional GSC and
consistently outperforms the MP-AIC and the AMC-AIC.

B. Under Different Reverberation Times

We then compare the performance of GSC with different
AICs under different T60s, where we use SIR = 0 dB. Fig. 2
depicts the performance of the three algorithms measured by
the reduction of the LSD and the improvement of the WB-
PESQ. It is apparent that the proposed ML-AIC performs bet-
ter than the other two AICs under different T60s. As expected,
the performance of GSC with different AICs is degraded and
the performance difference is less significant as T60 increases.
The reason may be that the MTF approximation adopted in
(1) is not accurate for a highly reverberant environment, and
the CTF-GSC may be adopted to address this problem as
mentioned before.

C. Spectrogram Examples

We show the spectrograms of the various signals in Fig. 3
for T60 = 360 ms and SIR = 5 dB. According to Fig. 3(d)–
Fig. 3(f), it is apparent that all AICs can reduce the babble
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noise. But the proposed method suppresses more noise and
obtains less speech distortion as compared to the other two
methods. Specifically, during periods around 6 s, the MP-
AIC encounters speech distortion due to a large amount of
speech leakage as shown clearly in Fig. 3(c) and uncontrolled
adaptations of the AIC. In contrast, the proposed ML-AIC and
AMC-AIC greatly alleviate speech distortion. Furthermore,
during noise-only periods from 9 to 10 s, the proposed
ML-AIC method provides more aggressive noise reduction
compared to the other two AICs.

V. CONCLUSION

We have proposed a new update rule for the AIC in
the GSC beamformer applied for speech enhancement. The
optimal AIC has been derived as a maximum likelihood
solution by assuming that the output of the GSC beamformer
follows a complex Gaussian distribution with time-varying
variances. We show that the update of the proposed ML-AIC
is automatically controlled by the GSC output’s variance, and
the online version of the ML-AIC can be regarded as the
RLS-based AIC with a variable forgetting factor. Experimental
results substantiate the effectiveness of the proposed method.
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