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Abstract—This paper introduces a new approach to perform
unequally spaced sound field interpolation (SFI) for beamforming
using a freely spaced circular microphone array (CMA) that
is robust to rotation. Unlike previous methods that required
a known microphone distribution, the proposed approach uses
unsupervised calibration to estimate the error angle of each
microphone. This is accomplished through an innovative opti-
mization problem, making it practical for CMAs with freely
spaced microphones. By using only the number of channels and
rotation angle, the proposed method enables accurate unequally
spaced SFI. Experimental results show that the proposed method
outperforms previous methods on freely spaced CMAs.

Index Terms—Sound field interpolation, rotation-robust beam-
forming, unsupervised calibration, unequally spaced circular
microphone array

I. INTRODUCTION

Both humans and humanoid robots rely on the essential
function of hearing, and numerous array signal processing
techniques have been developed to enhance this function, in-
cluding source separation and source enhancement. Advanced
source separation methods such as beamforming [1], [2],
independent low-rank matrix analysis [3], [4], and nonnegative
matrix factorization [5], [6] are commonly used. However,
these algorithms typically require the sound source and micro-
phones remain stationary, so that the acoustic transfer system
(ATS) is time-invariant and performance can be maintained. In
cases where there is a time-variant ATS due to moving sources
or sensors, time block processing can be used to mitigate the
reduced performance. However, if the block length exceeds
the time frame of the short-time Fourier transform (STFT),
a delay corresponding to the block length is introduced,
making it difficult to apply this method in real-time processing.
Therefore, there is still considerable room for improvement.

This paper considers an auditory system composed of a
circular microphone array (CMA) on the head of a human or
humanoid robot. The CMA can rotate with the head to capture
sound from a desired source in a noisy environment. However,
this rotation results in a time-variant ATS and necessitates the
re-estimation of the spatial filter, which is time-consuming,
making real-time processing difficult.

Wakabayashi et al. proposed a sound field interpolation
(SFI) technique [7] to make array signal processing robust
to the rotation of an equally spaced CMA. After the CMA
has rotated to a new position, based on the sound signal newly
recorded at this new position, this method allows us to estimate
what the sound signal would be like if it were observed at
the original position before rotation. Consequently, the rotated
CMA can be treated as a fixed unrotated one, thereby avoiding
the need to re-estimate the spatial filter and addressing the
bottleneck in online processing.

In practical applications, when a CMA is freely placed on
a human or humanoid robot’s head, it is not always possible
to strictly maintain a uniform distribution of microphones due
to hardware constraints and spacing limitations, making an
unequally spaced CMA (unes-CMA) more common than an
equally spaced one. Building on our research, an enhanced
approach called unequally spaced SFI (unes-SFI) has been
introduced that is robust to the rotation of an unes-CMA
[8]. The method utilizes a modified version of [7] to com-
pensate for errors in microphone positions in an unes-CMA,
i.e., angular deviations from corresponding equally spaced
positions on the same circle. Thus, an unes-CMA can be
regarded as if it were evenly spaced. In this method, it was
assumed the errors in each microphone’s position were already
known. However, these errors are not readily available in
most practical circumstances, e.g., a wearable CMA where the
microphones can be freely attached and detached by users, or
a CMA consisting of two microphones worn as hearing aids
on the ears along with several auxiliary microphones placed
around the head.

In this study, we develop an innovative method for rotation-
robust beamforming that can be applied to a freely dis-
tributed CMA without any prior knowledge of the microphone
placement. Firstly, we introduce an unsupervised calibration
method for an unes-CMA with an unknown distribution.
This approach only needs to be executed once then each
microphone’s position on the CMA can be confirmed without
the need for any prior location information. Secondly, we
combine the unsupervised calibration and unes-SFI together
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as pre-processing before beamforming. Since the distribution
information is necessary for implementing unes-SFI, the unsu-
pervised calibration can provide unes-SFI with the calibrated
position of each microphone. Hence, when performing SFI on
a freely spaced CMA, we only need to know the number of
microphones and the rotation angle. And the rotation angle
can be readily obtained through various means, such as using
an acceleration sensor or employing other estimation methods
[9]. Based on simulated experiments, we demonstrate that our
proposed method performs very well on a freely spaced CMA.

II. RELATED WORK

It is significant to note all the related works mentioned
below share the common objective of avoiding updating the
spatial filter after CMA rotates. Thus, the spatial filter before
rotation is known in advance. Using the signal after rotation,
it is possible to estimate the signal before rotation to directly
use the previous spatial filter without re-estimating it.

A. Equally spaced sound field interpolation [7]

Assume that x(θ) is a continuous periodic function in
the time-frequency domain on a circle’s circumference, with
2π as the period and θ ∈ [0, 2π) as the spatial angle. Let
xm, m ∈ {0, ...,M − 1}, be the STFT complex spectrum
of the observed signal captured by an M -channel equally
spaced CMA with interval 2π/M . Here, x(θ) and xm are
both obtained after the CMA rotates ∆ rad. The relationship
between xm and x(θ) can be represented as

xm = x
(
2π

m

M

)
, m = 0, ...,M − 1. (1)

x(θ) can be reconstructed from xm if the sampling theorem
is satisfied [10]. Thus, SFI can be achieved using the non-
integer sample theorem in the Fourier domain. The sound field
before rotation, a (−∆)-rad-rotated sound field x(2πm/M −
∆), corresponds to a δ-sample-shifted discretized sound signal
xm+δ , where δ = M(−∆)/2π. According to the non-integer
sample shift theorem in the DFT, xm+δ is represented as

xm+δ =
M−1∑
n=0

xnUm,n,δ. (2)

Um,n,δ can be numerically calculated [7]. In matrix represen-
tation, (2) can also be defined as x0+δ

...
xM−1+δ

 =

 U0,0,δ · · · U0,M−1,δ

...
. . .

...
UM−1,0,δ · · · UM−1,M−1,δ


 x0

...
xM−1


= UM (−∆)x(0), (3)

where UM (−∆) is the frequency-independent rotation trans-
form matrix.

B. Unequally spaced sound field interpolation [8]

The conceptual diagram of this approach is shown in Fig. 1.
We can define ϵ =

[
ϵ1 · · · ϵM

]T
as the vector of error

angle, where ϵm indicates the angular deviation between the
actual position of the mth microphone on the unes-CMA and
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Fig. 1. Conceptual diagram of unequally spaced SFI.

its corresponding position in a uniformly spaced distribution.
The sound field function observed by an unes-CMA after
rotation can be expressed as

x(ϵ) =
[
x
(
2π·0
M + ϵ1

)
· · · x

(
2π(M−1)

M + ϵM

)]T
. (4)

From (3), ϵ is compensated for in the first step to generate a
pseudo-signal recorded by a virtual equally spaced CMA,

x̂(0) =
[
x(0) · · · x

(
2π(M−1)

M

)]T
, (5)

which is calculated as

x̂(0) = UM (ϵ)−1x(ϵ), (6)

where UM (ϵ) is defined as

UM (ϵ)
def
=

 u1(ϵ1)
...

uM (ϵM )

 . (7)

Here, um(ϵn) ∈ C1×M is the mth row of UM (ϵn) ∈ CM×M .
Following this, in the second step, we apply SFI to obtain

the (−∆)-rad-rotated result of x̂(0), which is captured by this
virtual equally spaced CMA before rotation:

x(−∆)=
[
x(−∆)· · ·x

(
2π(M−1)

M −∆
)]T

=UM (−∆)x̂(0). (8)

Next, we must convert the virtual equally spaced CMA back
to the real unes-CMA, whose signal is expressed as

x(ϵ−∆M )=
[
x(ϵ1 −∆) · · ·x

(
ϵM −∆+ 2π(M−1)

M

)]T
,

(9)
where ∆M indicates an M -sized all-∆ vector. This signal can
be calculated as

x(ϵ−∆M ) = UM (ϵ)x(−∆). (10)

By combining (6), (8), and (10), it is possible to calculate the
signal before rotation from the signal after rotation:

x(ϵ−∆M ) = UM (ϵ)UM (−∆)UM (ϵ)−1x(ϵ). (11)

Finally, the original spatial filter before rotation can be directly
applied to x(ϵ−∆M ) without re-estimation.

III. SOUND FIELD INTERPOLATION WITH UNSUPERVISED
CALIBRATION

A. Overview
A freely spaced CMA is considered in this proposed

method. Considering the physical limitations of practical appli-
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cations, we assume that microphones cannot be simultaneously
placed in the same position. This approach differs from unes-
SFI in that it does not need to know each microphone’s posi-
tion. Instead, only the number of microphones and the rotation
angle, which could be easily determined, are necessary.

The main idea of our proposed method involves optimizing
the error vector ϵ by iterative updates. Fig. 2 illustrates the
conceptual diagram of this main idea, called unsupervised cal-
ibration. With this method, we can calibrate each microphone
using only the multichannel microphone signals without any
prior knowledge of the distribution. The method consists of
three steps. First, we assume a set of error values and choose
one channel signal as a reference and the remaining M − 1
channel signals as pseudo-observations. Secondly, we com-
pensate for the angular deviations between each microphone,
whose signal is chosen as pseudo observation, and its cor-
responding microphone on a virtual equally spaced (M − 1)-
channel CMA. The third step involves estimating the reference
by applying SFI to the virtual equally spaced (M−1)-channel
CMA. The estimated reference is then compared to the actual
reference, and the error vector is obtained by minimizing the
cost function between the two signals. This error vector can
be used to perform unes-SFI as before.

B. Formulation

The observation obtained from the unes-CMA is represented
by the same equation as (4). As the actual error vector ϵ is
unknown, we can assume a known error vector, denoted as
e =

[
e1 · · · eM

]T
, with an initial value of zero vector.

Consequently, the initial position of each microphone is as-
sumed to be P (e) =

[
0 + e1 · · · 2π(M − 1)/M + eM

]T
.

We choose one channel, the first channel for instance, as the
reference, xref = x(0 + ϵ1), and select the remaining M − 1
channels as pseudo-observations, represented as

xpsd(ϵ) =
[
x
(
2π
M + ϵ2

)
· · · x

(
2π(M−1)

M + ϵM

)]T
. (12)

By considering this pseudo-observation as a signal recorded
by an unequally spaced (M − 1)-channel CMA, we can
apply the first step of unes-SFI to xpsd(ϵ) using (6) and
position information P (e) to estimate the signal of a vir-
tual equally spaced (M − 1)-channel CMA, xpsd(0) =[
x(0) · · · x

(
2π(M−2)

M−1

)]T
. This can be computed as

xpsd(0) = UM−1(e)
−1xpsd(ϵ), (13)

UM−1(e) =


v1

(
2π·1
M + e2 − 0

)
...

vM−1

(
2π(M−1)

M + eM − 2π(M−2)
M−1

)
 . (14)

Here, vm(ϵn) ∈ C1×(M−1) is the mth row of rotation matrix
UM−1(ϵn) ∈ C(M−1)×(M−1).

After obtaining the equally spaced signal xpsd(0), we can
use conventional SFI to obtain the estimated result of the
reference signal, which can be expressed as

x̂ref = v1(e1)xpsd(0). (15)
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Fig. 2. Conceptual diagram of proposed method’s main idea.

It is important to note that the calculation of UM−1(e) and
v1(e1) in this method employs the assumed value e instead of
the actual error vector ϵ, as only the former is available and
the latter remains unknown.

The cost function can be defined as the difference between
x̂ref and xref , expressed as follows:

L1(e) = 10 log10

(∑
m,t,k

|x̂ref,m,t,k − xref,m,t,k|2
)
, (16)

where m, t, and k represent the channel, time frame, and
frequency bin indexes, respectively.

Next, the second channel’s signal x(2π/M + ϵ2) is selected
as the reference, and the same method as mentioned above
is used to calculate a new loss function L2(e). This can be
repeated for all M channels, resulting in M loss functions
denoted as L1(e),L2(e), . . . ,LM (e), where each cost func-
tion corresponds to a different reference signal. By combining
these cost functions, the final loss function L(e) is obtained:

L(e) =
M∑
i=1

Li(e). (17)

Calculating a closed-form solution for L(e) is difficult; how-
ever, it is differentiable with respect to e, and back propagation
can be used to estimate the error vector ϵ. Therefore, we
minimize the cost function using a gradient descent method
based on the Adam optimizer [11] to find the solution through
iterative optimization,

ϵ̂ = argmin
e

L(e). (18)

Despite (17) not being strictly convex, it possesses a global
minimum. In the realm of gradient descent, attaining the
global minimum is typically challenging. More often than
not, we find ourselves converging towards a local minimum
instead. Nevertheless, even though it may not be the absolute
lowest point, this local minimum still showcases commendable
effectiveness in performance. Please note that our calibration
method does not use a deep neural network, and the optimiza-
tion only searches for the optimum of e based on frame-wise
observation.

After obtaining the estimated error vector ϵ̂, we can apply
the previous unes-SFI to generate the (−∆)-rad-rotated signal:

x̂(ϵ−∆M ) = UM (ϵ̂)UM (−∆)UM (ϵ̂)−1x(ϵ). (19)

Finally, we can estimate the sound field as it would have
been observed in its original position before rotation without
requiring the exact value of ϵ.
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Fig. 3. Simulated environment in the experiments.

IV. EXPERIMENTAL EVALUATION

A. Setup

We conducted simulated experiments on the SiSEC database
[12], each utterance of which was sampled at 16 kHz, to
evaluate the efficacy and robustness of the proposed method.
We selected eight speech signals, including four female and
four male voices, as sound sources from various directions, as
shown in Fig 3. To simulate a reverberant environment, we
used an RIR generator [13] based on the image method [14]
to create room impulse responses (RIRs) with a reverberation
time of approximately 100ms. We then convolved these RIRs
with the sound source signals to obtain microphone signals. To
perform in the time-frequency domain, we applied the STFT
using a 1/8-shifted Blackman window with a length of 64ms.

An M -channel CMA with 0.05m radius was utilized to
capture sound signals in a noise-free room. To generate an
unes-CMA, an error was added to the position of each micro-
phone. This error, denoted as ωi (deg), i ∈ {0, ...,M − 1}, fol-
lowed a Gaussian distribution with zero mean and a standard
deviation of 100 deg. Ten different unes-CMAs were produced.
We additionally considered an unknown mismatch for each
microphone’s position, ϵi (deg), to make the actual distribution
of the unes-CMA unknown. During unes-SFI, we assumed that
the angular error of each microphone was ωi because only
ωi was available, whereas the actual angular error should be
ωi+ϵi. We anticipated that this would degrade the performance
of unes-SFI and that the proposed method could overcome the
influence of unknown mismatches. ϵi was also subject to a
Gaussian distribution with zero mean and variances ranging
from 0 to 500 degrees-squared in increments of 10. For each
variance, there were a total of 100 samples.

For the first experiment, we evaluated the performance in
terms of the signal-to-error ratio (SER), which is defined as

SERm,k = 10 log10

( ∑
t |xm,t,k|2∑

t |x̂m,t,k − xm,t,k|2

)
, (20)

where the signal xm,t,k and its estimate x̂m,t,k are represented
in the time–frequency domain. The values of M and the rota-
tional angle were set to 5–6 and 10, 20, 30 deg, respectively.
For the second experiment, we compared the performance of

Unequally spaced SFI without calibration Proposed method

Variance

SE
R

 im
pr

ov
em

en
t [

dB
] M = 5, φ = 20 deg M = 5, φ = 20 deg

0 100 200 300 400 500

15

20

10

5

0

-5 0 100 200 300 400 500

Fig. 4. Boxplots of the relationship between the variance of the mismatch
and the SER improvement.

source enhancement using the minimum variance distortion-
less response (MVDR) beamformer [15]–[17], and evaluated
the results using the source-to-distortion ratio (SDR) and
source-to-interference ratio (SIR) [18] at a sampling frequency
of 16 kHz. The beamformer’s filter was estimated as:

wMVDR =
Φ−1

nnh̃0

h̃H
0 Φ−1

nnh̃0

, (21)

where Φnn and h̃0 respectively denoted the covariance matrix
of the interference signal and relative transfer function (RTF)
[19]. Two random sources were mixed into the observation,
with an angle between them of 30, 60, . . . , 180 deg. In this ex-
periment, we set M and ϕ to be 5 and 20, 30 deg, respectively.

B. Evaluation results of sound field interpolation

Fig. 4 depicts the relationship between the variance of
mismatch and SER improvement, with M set to 5 and ϕ
set to 20 deg. The SER improvement measures the increase
in the SER score achieved through processing. The baseline
is the case without any processing, where the SER is com-
puted by comparing the uninterpolated signals with the true
signals. Since SFI struggles to estimate the higher-frequency
components, we calculated the mean SER improvement over
0–1 kHz and five channels for each sample. As the variance
of mismatch increases, the performance of unes-SFI without
calibration deteriorates significantly. In contrast, our proposed
method delivers a more consistent and superior result. Specif-
ically, our method could accurately estimate the microphones’
positions and maintain excellent interpolation performance
despite substantial unknown mismatches.

Fig. 5 shows SER improvement for different M and ϕ, with
a variance of mismatch set to 200. We calculated mean SER
improvement over 0–1 kHz and M channels. The proposed
method outperformed unes-SFI without calibration signifi-
cantly. We also evaluated the performance of unes-SFI with
known mismatch. While the proposed method had slightly
lower improvement, which is expected due to the lack of prior
information, the degeneracy was minimal and acceptable.

C. Evaluation results of source enhancement

First, the MVDR beamformer filter was computed at the
original microphone position before any rotation. This filter,
denoted as w, was applied to the multichannel STFT spectro-
gram obtained from the unes-CMA without rotation, resulting
in a reference performance denoted as No-Rot. This is the
most favorable scenario as true signals, instead of interpolated
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Fig. 6. Boxplots of SDR and SIR obtained by MVDR beamformer with
different processing methods.

signals, are used for MVDR. After rotation, the spectrograms
obtained from unes-SFI without calibration (Int-NoCalib),
unes-SFI with known mismatches (Int-kM), and the proposed
method (Int-Calib(Pro)), were processed by w to generate
the estimated target signal. The unprocessed cases (No-Proc)
and No-Rot were used as baselines for comparison.

Fig. 6 presents the SDR and SIR results for different
methods when the variance of mismatch is 200. Int-kM
and Int-Calib(Pro) performed better than Int-NoCalib and
showed results closest to the highest performance, regardless
of the simulated environment. The difference between Int-kM
and Int-Calib(Pro) was still acceptably small. These results
suggest our proposed method with unsupervised calibration
can maintain robustness to the rotation of an unes-CMA and
enhance the performance of array signal processing, even
when the exact microphone distribution is unknown.

V. CONCLUSION

This paper introduced a novel framework of SFI with
unsupervised calibration to improve beamforming robustness
to unes-CMA rotation. By estimating error angles, we achieved
unes-SFI without prior knowledge of microphone distribution.
Experimental results showed high performance even with
unknown mismatches. Future work includes addressing chal-
lenges such as non-circular microphone arrays, high-frequency
component estimation, and real environment applications.
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