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Abstract—Capturing speech from a target source in the pres-
ence of interfering sources and noise using acoustic beamforming
is an important processing tool for machine listening. When
the target speaker can be at any location in the 3D space,
spherical microphone arrays are desirable due to their ability to
steer the beamformer towards any direction without affecting its
directivity pattern. In this work, two beamformers based on the
maximum likelihood estimation principle are introduced in the
spherical harmonics domain. The first beamformer is designed
by assuming that the coefficients of the target speech in the
time-frequency domain at the beamformer output follow a zero-
mean complex Gaussian prior distribution with time-varying
variances. As speech coefficients are better modelled using
Laplacian distribution, the second beamformer is designed by
assuming a Laplacian prior for the target speech coefficients. To
aid the capture of the desired speech, a distortionless constraint
is also added to the formulation of both beamformers. The
iterative update rules for the variances and the weights of both
beamformers have been derived. Simulation results show that
the proposed beamformers are more effective in target speech
enhancement and distant speech recognition applications.

Index Terms—Spherical microphone arrays, Acoustic beam-
forming, Speech enhancement, Maximum likelihood estimation

I. INTRODUCTION

IN the presence of concurrent speech from interfering
speakers and background noise, the ability to capture the

desired speech while cancelling the interfering speeches and
noise leads to target speech enhancement. It has applications
in automatic distant speech recognition, robot audition, speech
separation and diarization, human-robot interaction, binaural
hearing aids etc. If the target speaker and the interfering
speakers are at different spatial locations, then one of the best
ways to reject the interfering speeches is by using acoustic
beamforming [1]. The widely used MPDR (minimum power
distortionless response) beamformer [2] was not specifically
designed for speech signals. Recently, based on the assumption
that the target speech in the time-frequency (TF) domain can
be modelled using sparse priors such as a complex Gaus-
sian distribution with time-varying variances, various speech
processing algorithms have been developed [3]–[9]. However,
most of these techniques, including acoustic beamforming and

This work is supported by the Department of Science and Technology,
Government of India under the Core Grant Scheme (CRG/2018/002919) and
TEOCO Chair of Indian Institute of Technology Gandhinagar.

speech recognition, are developed for processing in the spatial
domain. Spherical microphone arrays (SMAs), on the other
hand, can take advantage of phase-mode processing by trans-
forming the microphone signals into the spherical harmonics
(SH) domain [10]–[12]. Array processing in the modal domain
is advantageous because it leads to dimensionality reduction
and a straightforward separation of the frequency parameters,
array parameters and signal parameters. SMAs can also cover
the entire 3D space without any directional ambiguity and
their resolution is direction independent which is desirable in
acoustic beamforming as the target source can be incident from
any direction. Consequently, in recent years, there has been an
increased focus on SH domain array processing [13]–[17].

In this work, we first introduce a beamformer in the SH
domain that operates under the assumption that the target
signal at the beamformer output follows a complex Gaussian
distribution with time-varying variances. The weights of the
beamformer are obtained based on the maximum likelihood
estimation (MLE) principle. In order to further preserve the
target speech, a distortionless constraint is added to the beam-
former. Secondly, another beamformer in the SH domain is in-
troduced which assumes a Laplacian prior on the target speech
as it has been shown that speech coefficients in the TF domain
are more accurately modelled using the Laplacian distribution
rather than the complex Gaussian distribution [18]–[22]. The
update rules for estimating the variances and the weights of
both beamformers are derived in this work. Simulation results
reveal the superiority of the proposed beamformers in speech
enhancement and distant speech recognition applications.
Notations: (.)∗, (.)T , (.)H are the conjugate, the non-conjugate
transpose and the conjugate transpose operator, respectively.
∥.∥p denotes the ℓp-norm of a vector. R is the set of real
numbers and IM refers to an identity matrix of size M ×M .

II. PRELIMINARIES

We briefly introduce the SH domain signal model for an SMA
placed in a sound field in this section. For a detailed discussion
of SH signal model, readers are referred to [11]. We consider
an SMA with Q microphones on its surface of radius r.
Let rq , q ∈ {1, 2, . . . , Q}, be the position vector of the qth

microphone (assuming the center of the SMA is at the origin).
We assume that there are D speakers located in the far-field of
the SMA at locations Ωd = (θd, ϕd), d ∈ {1, 2, . . . , D}. Here,
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θd refers to the elevation angle and ϕd refers to the azimuth
angle of the dth source with respect to the centre of the SMA.
In the Short Time Fourier Transform (STFT) domain, we can
express the sound pressure at the Q microphones at the τ th

time frame and νth frequency bin as [11]

p(τ, ν) =
∑D

d=1
h(ν,Ωd)Sd(τ, ν) + η(τ, ν), (1)

where h(ν,Ωd) = [H(ν,Ωd, r1), . . . ,H(ν,Ωd, rQ)]
T and

H(ν,Ωd, rq) represents the sound pressure at point rq from a
unit amplitude plane-wave arriving from Ωd. Sd is the ampli-
tude of the dth source and vector η represents the sensor noise
at the Q microphones. We process the microphone signals
in the STFT domain as speech signals are non-stationary in
nature. The SH transform hlm(ν,Ωd) of h(ν,Ωd) can be
expressed as [11], [23]

hlm(ν,Ωd) = [bl(k)Y
∗
lm(Ωd)]l≥0,|m|<l , (2)

where Ylm is the SH of order l and degree m defined as

Ylm(Ω) = Ylm(θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Plm(cos θ)ejmϕ,

l ≥ 0, |m| < l, (3)

where Plm is the associated Legendre function. In (2), bl(k)
is referred to as the frequency-dependent mode strength which
depends on various properties of the SMA such as microphone
type, sampling locations, radius etc. and k = 2πνfs

cF is the
wavenumber (c is the speed of sound, fs is the sampling
frequency and F is the number of frequency bins). Usually,
it is convenient to express the SH signal model in a general
form that is independent of the array properties. To cancel the
dependency on array properties, we divide (2) by bl(k) which
gives h̃lm(Ωd) = hlm(ν,Ωd)

bl(k)
. Notice that h̃lm(Ωd) is now

independent of frequency and depends only on the direction-
of-arrival angle Ωd. Now, we can express the spatial domain
signal model (1) in the SH domain as

plm(τ, ν) =
∑D

d=1
h̃lm(Ωd)Sd(τ, ν) + ηlm(τ, ν), (4)

where plm and ηlm are referred to as the mode strength
compensated SH transform of the spatial domain signal p and
noise η, respectively. Assuming aliasing free sampling [24]
till l = L, we can express h̃lm(Ωd) of size ((L+ 1)2 × 1) as

h̃lm(Ωd) = [Y ∗
00(Ωd), Y

∗
1(−1)(Ωd), Y

∗
10(Ωd), . . . , Y

∗
LL(Ωd)]

T .

In a reverberant room, the direct path sound pressure repre-
sented by H(ν,Ωd, rq) is substituted by the acoustic transfer
function (ATF) G(ν,Ωd, rq) from the dth source to the mi-
crophone at rq . Consequently, for a reverberant environment,
we obtain the SH signal model by replacing h̃lm(Ωd) in (4)
with the SH domain ATF vector g̃lm(Ωd).
To perform beamforming and extract the desired speech
z(τ, ν) from plm(τ, ν) in each TF bin, the SH domain
microphone signal is passed through a linear filter wlm to
get z(τ, ν) = wH

lm(ν)plm(τ, ν). One of the most common
beamformers in the modal domain is SH-MPDR [11] which

operates by minimizing the beamformer output power while
adding a distortionless constraint on the desired speech. Ac-
cordingly, in each (τ, ν) TF bin, SH-MPDR is formulated as

min
wlm

wH
lm(ν)Rplm

wlm(ν) s.t. wH
lm(ν)g̃lm(Ωd) = 1. (5)

where Rplm
= E[plm(τ, ν)pH

lm(τ, ν)] is the spatial covariance
matrix of the microphone signal. The solution to (5) is given
by wlm(ν) =

(Rplm
)−1g̃lm(Ωd)

g̃H
lm(Ωd)(Rplm

)−1g̃lm(Ωd)
. After obtaining z(τ, ν)

using wlm(ν), we apply inverse STFT to get the estimated
speech in the time domain. The objective is for the estimated
speech to be as close to the desired speech as possible.

III. MAXIMUM LIKELIHOOD DISTORTIONLESS RESPONSE
BEAMFORMING IN THE SH DOMAIN (SH-MLDR)

SH-MPDR does not assume that the target speech coefficients
belong to any prior distribution in the STFT domain. In this
section, we introduce two beamformers specifically designed
for speech that maximize the likelihood that the desired STFT
speech coefficients follow a suitable prior distribution.

1) SH-MLDR with Complex Gaussian Prior: In this sub-
section, we model the unknown STFT coefficients of the
desired speech as a random variable having a circular zero-
mean complex Gaussian (CG) prior with time and frequency
dependent variances λ(τ, ν) [4]. So, the probability density
function (PDF) of the beamformer output can be expressed as

P (z(τ, ν)) =
1

πλ(τ, ν)
e−

|z(τ,ν)|2
λ(τ,ν) . (6)

It is assumed that z(τ1, ν1) and z(τ2, ν2) are independent for
(τ1, ν1) ̸= (τ2, ν2). The unknown parameters to be estimated
are the variances λ(τ, ν) for all (τ, ν) and the beamforming
weights wlm(ν) for all ν. Since the signal model in (4) and
the PDF in (6) assume no dependency across frequencies, we
can estimate the unknown parameters independently in each
frequency bin by maximizing the likelihood function below

L (Θ(ν)) =
∏Tν

τ=1
P (z(τ, ν)) , (7)

where Θ(ν) = {wlm(ν), λ(1, ν), . . . , λ(Tν , ν)} is the set of
unknown parameters and Tν is the number of time frames
in the νth frequency bin. To replace the product in (7) with
a summation, we take its logarithm. Then, maximizing (7)
is equivalent to minimizing the negative of the resulting log-
likelihood function which is given as

ℓ(Θ(ν)) =

Tν∑
τ=1

(
log(|λ(τ, ν)|) + z(τ, ν)z∗(τ, ν)

λ(τ, ν)

)

=

Tν∑
τ=1

(
log(|λ(τ, ν)|) + wH

lmplmpH
lmwlm

λ(τ, ν)

)
. (8)

Adding the distortionless constraint towards the target source
direction wH

lmg̃(Ωd) = 1 to (8) using the method of Lagrange
multiplier results in an augmented cost function as

Jν(Θ(ν)) =
∑Tν

τ=1

(
log(|λ(τ, ν)|) + wH

lmplmpH
lmwlm

λ(τ, ν)

)
+ βν(w

H
lmg̃lm(Ωd)− 1), (9)
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Algorithm 1 SH-MLDR with Complex Gaussian Prior

inputs: plm(τ, ν) ∀ τ , RTF estimate ˆ̃glm(Ωd), Tν , ϵν .
initialize: λ(τ, ν) = |(w0

lm(ν))Hplm(τ, ν)|2
repeat

wlm(ν)← use (12) with ˆ̃glm(Ωd)
z(τ, ν)← wH

lm(ν)plm(τ, ν)
λ(τ, ν)← max{z(τ, ν)z∗(τ, ν), ϵν}

until: condition satisfied
output: beamformer weights wlm(ν) for each ν

where βν is the Lagrange multiplier. Since the cost function
depends on variables λ(τ, ν) and wlm(ν), their optimal values
cannot be obtained by minimizing Jν analytically. Rather, the
variables have to be estimated using iterative update rules.
We can find the update rule for each variable by taking the
partial derivative of the cost function in (9) with respect to the
corresponding variable and equating it to zero while assuming
the other variable to be constant. So, the update rule for λ(τ, ν)
after setting the partial derivative to zero is

∂Jν(Θ(ν))

∂λ(τ, ν)
=

1

λ(τ, ν)
− z(τ, ν)z∗(τ, ν)

λ2(τ, ν)
= 0,

λ(τ, ν) = z(τ, ν)z∗(τ, ν) = |wH
lm(ν)plm(τ, ν)|2. (10)

In a similar way, setting the partial derivative of Jν w.r.t
wlm(ν) to zero gives

Tν∑
τ=1

(
plmpH

lm

λ(τ, ν)

)
wlm(ν) + βν g̃lm(Ωd) = 0. (11)

Solving (11) after eliminating βν by assuming that the distor-
tionless constraint is satisfied, the closed-form update rule for
wlm(ν) is obtained as

wlm(ν) =
(Rp̃lm

)
−1

g̃lm(Ωd)

g̃H
lm(Ωd) (Rp̃lm

)
−1

g̃lm(Ωd)
. (12)

where Rp̃lm
=
∑Tν

τ=1

(
plmpH

lm

λ(τ,ν)

)
. The two-step update process

is repeated iteratively until convergence is reached or a fixed
number of iterations is completed. The complete process of
SH-MLDR beamformer with complex Gaussian prior (SH-
MLDR-CG) is outlined in Algorithm 1. In the first iteration,
weight w0

lm(ν) is initialized with the weight of SH-MPDR.
ϵν is a small real-valued positive constant to avoid very small
values of λ(τ, ν) for robust estimation of Rp̃lm

.
2) SH-MLDR with Laplacian Prior: It has been reported

in various works of literature that speech coefficients are
better modelled using Laplacian distribution (LD) rather than
using Gaussian distribution [19]. This is because LD leads
to sparser coefficients as it is steeper at the mean and has a
heavier tail. In this subsection, we introduce the SH-MLDR
beamformer where the desired speech at the beamformer
output is modelled locally in each TF bin with an LD. Both
the real and imaginary components of z(τ, ν) are assumed to
be independently modelled with a zero-mean LD with equal

Algorithm 2 SH-MLDR with Laplacian Prior

inputs: plm(τ, ν) ∀ τ , RTF estimate ˆ̃glm(Ωd), Tν , ϵν .
initialize: λ(τ, ν) = |(w0

lm(ν))Hplm(τ, ν)|2
repeat

wlm(ν)← solve (18) with ˆ̃glm(Ωd)
z(τ, ν)← wH

lm(ν)plm(τ, ν)
λ(τ, ν)← max{(|ℜ(z(τ, ν))|+ |ℑ(z(τ, ν))|)2 , ϵν}

until: condition satisfied
output: beamformer weights wlm(ν) for each ν

variances of λ(τ, ν)/2. The PDF of the beamformer output is
then given as

P (z(τ, ν)) =
1

λ(τ, ν)
e
−2

|ℜ(z(τ,ν))|+|ℑ(z(τ,ν))|√
λ(τ,ν) , (13)

where ℜ(.) and ℑ(.) are the real and imaginary components of
a complex number, respectively. Now, similar to the discussion
in the previous subsection, we can estimate the unknown
parameters by minimizing the negative of the log-likelihood
function of the joint PDF which is given as

ℓ̃(Θ(ν)) =

Tν∑
τ=1

(
logλ(τ, ν) + 2

|ℜ(z(τ, ν))|+ |ℑ(z(τ, ν))|√
λ(τ, ν)

)
,

(14)
(14) is minimized along with the distortionless constraint
wH

lm(ν)g̃lm(Ωd) = 1. The proposed cost function in (14) can
be differentiated with respect to λ(τ, ν). So, setting its partial
derivative to zero, we get the update rule for λ(τ, ν) as

∂ℓ̃(Θ(ν))

∂λ(τ, ν)
=

1

λ(τ, ν)
− |ℜ(z(τ, ν))|+ |ℑ(z(τ, ν))|

λ
3
2 (τ, ν)

= 0,

λ(τ, ν) = (|ℜ(z(τ, ν))|+ |ℑ(z(τ, ν))|)2 . (15)

The cost function in (14) along with the distortionless con-
straint is not differentiable with respect to wlm(ν). Rewriting
the cost function in (14) in terms of wlm gives

ℓ̃(wlm) =

Tν∑
τ=1

2√
λ(τ, ν)

(
|ℜ(wH

lm(ν)plm(τ, ν))|

+ |ℑ(wH
lm(ν)plm(τ, ν))|

)
+ γν , (16)

where γν does not depend on wlm(ν). Now, the estimate of
wlm can be obtained as a solution to the problem below

min
wlm

ℓ̃(wlm) s.t. wH
lmg̃lm(Ωd) = 1. (17)

(17) can be solved using the CVX toolbox [25] by converting
it into the following linear programming problem [26]

minv,wlm
∥v∥1

s.t. v ≥ 0

|ℜ(wH
lm(ν)plm(τ, ν))| ≤

√
λ(τ, ν)

2
v2τ−1

|ℑ(wH
lm(ν)plm(τ, ν))| ≤

√
λ(τ, ν)

2
v2τ

wH
lmg̃lm(Ωd) = 1, (18)
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TABLE I
OBJECTIVE MEASURES FOR THE PERCEPTUAL EVALUATION OF THE TARGET SPEECH AT THE OUTPUT OF THE VARIOUS BEAMFORMER COMPARED TO

THE CLEAN SPEECH IN THE TIME DOMAIN. THE NUMBER IN D REFERS TO THE DESIRED SPEAKER.

Anechoic (AE) RT60 = 150 ms RT60 = 200 ms

Beamformers D CD PESQ WSS LLR CD PESQ WSS LLR CD PESQ WSS LLR

SH-MPDR 1 3.2851 1.3787 31.0631 0.3646 3.9914 1.2354 50.1410 0.5761 4.4721 1.1140 59.5806 0.6859
2 3.1382 1.4382 27.1895 0.3256 3.6186 1.5653 47.1980 0.4988 3.9729 1.3922 58.4016 0.5561

SH-MLDR-CG 1 2.9094 1.9707 24.5401 0.3250 3.645 1.8754 45.4062 0.5137 4.2426 1.6885 53.1389 0.5496
2 2.5565 2.1113 22.7916 0.2614 3.3643 1.9894 41.4946 0.4362 3.5262 1.5304 51.6684 0.4884

SH-MLDR-LP 1 2.7600 2.2622 22.3734 0.3022 3.6279 2.0331 42.7903 0.4493 3.8827 1.8195 49.6425 0.5050
2 2.2839 2.2967 19.6472 0.2301 3.0189 2.1361 39.1988 0.385 3.4469 2.0151 47.497 0.4389

where variable v ∈ R2Tν and vτ is the τ th element of v.
The update of λ(τ, ν) using (15) and update of wlm using
(18) is performed iteratively until some convergence criterion
is reached or a certain number of iterations is completed.
The procedure of SH-MLDR beamformer with Laplacian prior
(SH-MLDR-LP) is summarized in Algorithm 2. Although SH-
MLDR-LP requires solving a linear programming problem,
it is expected to perform better than SH-MLDR-CG. This is
because Laplacian prior leads to sparser solutions when com-
pared to Gaussian prior which is desirable as the beamformer
output should be sparser than the mixed speech input signal
captured by the microphone array. The inducing of sparsity at
the beamformer output can also be seen from the appearance of
ℓ1-norm minimization in (18). Also, modern solvers dealing
with linear programs have become fast enough and can be
comfortably deployed in real-time applications.

IV. PERFORMANCE EVALUATION

The acoustic beamforming performances of SH-MPDR, SH-
MLDR-CG and SH-MLDR-LP are compared in this section.
A 20 microphone SMA of radius 3 cm at the centre of a room
with dimensions 7×5×4 m3 is considered. The microphones
are placed at the centre of the faces of a dodecahedron. We
assume that two speech sources are located at (45◦, 30◦) and
(135◦, 30◦) at a distance of 2 m from the array. The anechoic
speeches were taken from the standard Librispeech dataset
[27] which is a corpus of audiobooks in the public domain.
The sampling frequency was 16 kHz and the duration of each
speech was 4 seconds. In the reverberant case, we generated
the reverberant speeches by convolving both speeches with
the room impulse response (RIR) from the locations of the
sources to the microphones. The image method [28] was
used to generate the RIRs. For the generation of the RIRs,
we consider two cases: 1) reverberation time (RT60) of 150
ms and 2) RT60 of 200 ms. While processing in the TF
domain, the STFT window length was chosen to be 1024
which corresponds to 64 ms of data in one time frame.
Hanning window was used, and an overlap of 50% was set
between consecutive frames (Nτ = 124). Additive Gaussian
noise with a signal-to-noise ratio of 20 dB was added to the
captured microphone signals in all the simulations. We set
the number of iterations for SH-MLDR-CG and SH-MLDR-
LP to three. The RTF estimation necessary for all three
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Fig. 1. Output STFT spectrograms (SG) of the beamformers. Interfering
residuals are highlighted using the red boxes. Each column shows the SG when
the distortionless constraint is towards one of the two speakers, respectively.

beamformers was done using the method laid out in [29]. Fig.
1 shows the spectrograms of the clean speeches as well as
the spectrograms at the beamformer outputs for comparison
for the anechoic case. We can see that SH-MPDR is unable
to remove the interfering speech and noise residuals from the
target speech, whereas both SH-MLDR-CG and SH-MLDR-
LP are able to completely remove the residual elements from
the target speech leading to significant speech enhancement.
For more clarity on the performance, the output of the various
beamformers was compared using objective measures such
as Cepstral Distance (CD), Perceptual Evaluation of Speech
Quality (PESQ), Weighted Slope Spectral (WSS) distance
and Log-likelihood Ratio (LLR) [30]. The measures for each

29



TABLE II
COMPARISON OF DISTANT SPEECH RECOGNITION (DSR) PERFORMANCE

RT60 SH-MPDR SH-MLDR-CG SH-MLDR-LP
S 1 2 1 2 1 2
W
E
R

AE 46.67 42.86 9.09 6.67 9.09 6.67
0.15 s 57.14 46.67 33.33 26.67 21.43 21.43
0.2 s 64.29 53.33 35.71 33.33 26.74 26.74

S
D
R

AE 6.078 8.731 12.184 13.164 13.27 14.521
0.15 s 1.567 1.593 8.017 8.164 9.041 9.611
0.2 s -1.420 0.263 5.103 5.841 6.288 6.615

beamformer are listed in Table I for both sources. It is
clear from the table that SH-MLDR-LP performs better in
separating and enhancing the desired speech than SH-MLDR-
CG; however, both the proposed beamformers outperform SH-
MPDR even in moderately reverberant environments. This
is because, in the formulation of the proposed beamformers
in (9) and (17), the presence of the inverse of the λ(l, f)
term plays a crucial role as it ensures that TF bins with low
variance (possibly belonging to interfering speeches and noise
component) are given a higher priority when minimizing the
power at the output of the beamformer and TF bins with
high variance (possibly containing content from the desired
speech) are given a lower priority, which adds more credibility
to the proposed beamformers than a conventional SH-MPDR
beamformer which does not take into account the variance of
the TF bins. One of the major applications of acoustic beam-
formers is distant speech recognition (DSR) in the presence
of interfering speakers and isotropic noise. The comparison
of DSR performance in terms of Signal-to-Distortion Ratio
(SDR) and Word Error Rate (WER) is presented in Table II.
Once again, it can be seen that SH-MLDR-LP performs the
best and that both the proposed beamformers outperform the
SH-MPDR beamformer.

V. CONCLUSION

Maximum likelihood distortionless response (MLDR) beam-
formers with complex Gaussian prior (CGP) and Laplacian
prior (LP) in the spherical harmonics (SH) domain are in-
troduced in this work. The update rules for the variances
and weights of the beamformer using CGP leads to closed-
form solutions whereas using LP requires solving a linear
program. However, the speech enhancement performance of
SH-MLDR-LP is better than SH-MLDR-CG due to more
accurate modelling of the target speech signal. In extensive
future work, additional features will be added to the proposed
beamformers so that they can handle high reverberation and
more complicated acoustic environments, along with the de-
velopment of an online version of the proposed beamformers.
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