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ABSTRACT

Source extraction, which aims at extracting the target source signals
from the observed reverberant mixtures, plays an important role
in voice communication and human-machine interfaces. Among
the numerous source extraction methods that have been developed,
the geometrically constrained (GC) one, which incorporates the
direction-of-arrival (DOA) information of the target signals, has
demonstrated great potential. However, this method generally
suffers from significant performance degradation in strong reverberant
environments since it is challenging to obtain in such environments
accurate DOA estimates that are needed by the algorithm. To
address this problem, we present in this work an iterative algorithm,
which integrates the source-wise weighted prediction error (WPE)-
based dereverberation principle with the geometrically constrained
source extraction method. We show that this algorithm is able to
improve the DOA estimation accuracy as well as the source extraction
performance.

Index Terms— Blind source separation, semi-blind source
extraction, geometrical constraint, dereverberation.

1. INTRODUCTION

Blind source separation (BSS), which is a particular problem of speech
enhancement [1–4], is an essential component of audio processing
systems as speech signals recorded under realistic conditions by
microphones often consist of signals from multiple sources. BSS aims
at separating source signals from observed mixtures with minimal
prior information [5]. Independent component analysis (ICA)
[6, 7] is one of the most widely-used BSS approaches, which
estimates the demixing system under the assumption of statistically
independent source signals. As speech signals are broadband in
nature, a multivariate extension of ICA, i.e., independent vector
analysis (IVA) [8–10], has been proposed to resolve the well-known
inner permutation problem by considering higher-order relationship
among frequency components of the source signals.

However, those BSS methods in their original form work only for
the determined cases where the number of sources is restricted to be
equal to the number of sensors. To extract sources in overdetermined
scenarios, i.e., more sensors than sources, independent vector
extraction (IVE) [11–13] has been proposed by introducing a
statistical model for the background noise. But IVE still suffers
from a number of major issues including: 1) all the target signals
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are separated simultaneously with a random output order, which
is well-known as the outer permutation problem; 2) it is difficult
to determine the desired sources when some undesired sources are
similarly strong as the target ones; 3) the extraction performance
degrades significantly in highly reverberant environments, which are
not uncommon in practical applications.

To deal with the aforementioned issues, the geometrically
constrained (GC) methods [14,15] were proposed, which can improve
the separation performance and at the same time mitigate the outer
permutation problem. In [16, 17], an iterative projection (IP)-
like optimization method, which uses the vector-wise coordinate
descent (VCD) algorithm, was introduced to the GC-based extraction
framework to accelerate its convergence. Recently, a spatially
informed Bayesian framework [18, 19] based on the maximum
a posteriori (MAP) principle was proposed to incorporate both
spatial prior and background noise prior. Moreover, the principle
of adaptive beamforming was combined with AuxIVA [20] for further
performance improvement.

Although so much effort has been devoted to it, the existing
methods still suffer from great performance degradation in highly
reverberation environments. In order to overcome the degradation of
extraction performance caused by reverberation, several methods were
proposed recently. In [21], a blind dereverberation method, WPE,
is used as a preprocessing step for BSS, which leads to a cascaded
optimization method. To further mitigate the effect of reverberation,
several methods, which jointly optimize the dereverberation and BSS
modules, have been proposed [22–25]. Meanwhile, a convolutional
beamformer (CBF) [26, 27] has been developed to extract the target
source in highly reverberant environments. The so-called source-wise
factorization CBF was then developed [27] to reduce computational
complexity, in which the global filter is factorized into a source-wise
WPE filter and an extraction filter. The extraction filter is updated with
the IP method while the WPE filter is updated though minimizing the
mean square error (MSE) [28–30]. But these methods still suffer from
the problem of slow convergence and outer permutation.

To circumvent the slow convergence and outer permutation
problem of the algorithm in [27], we present in this work a spatially
informed joint source extraction and dereverberation framework,
which can be regarded as an extension of our previous work [20].
Unlike other geometrically constrained source extraction methods,
the proposed framework integrates a WPE module to improve
the extraction performance, particularly, in highly reverberant
environments. Moreover, the DOA prior is refined during iterations
to enhance the geometric constraint. Simulations demonstrate that the
proposed method is able to significantly improve the source extraction
performance as compared to other geometrically constrained methods
in highly reverberation conditions.
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2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the scenario where there are N sound sources in a
reverberant environment and we use an array consisting of M
microphones (N ≤ M ) to capture the signals. The signals observed
by the microphone array in the short-time Fourier transform (STFT)
domain can then be expressed as

x(t, f) =

La−1∑
τ=0

A(τ, f)s(t− τ, f), (1)

where t = 1, . . . , T and f = 1, . . . , F denote, respectively, the
time-frame and frequency-bin indexes, T denotes the total number
of the time frames, F denotes the total number of the frequency bins,
x(t, f) ∈ CM×1 and s(t, f) ∈ CN×1 represent, respectively, the
observed mixture signals and the source signals in STFT domain,
A(τ, f) ∈ CM×N is the mixing matrix at time lag τ also in the STFT
domain, and La is the number of time lagged mixing matrices. Based
on the multi-input multi-output (MIMO) CBF described in [27], the
demixing rule can be written in the STFT domain as

y(t, f) = W(0, f)x(t, f) +

L−1∑
τ=D

W(τ, f)x(t− τ, f), (2)

where W(0, f) ∈ CM×M and W(τ, f) ∈ CM×M are matrices
composed of the convolutional beamformer coefficients, y(t, f) ∈
CM×1 contains the separated signals, D is the prediction delay and L
is the length of the CBF filters, with 0 < D ≤ L − 1. As shown
in [28–30], the mth component of y(t, f) in (2) can be rewritten
through the source-wise factorization of the MIMO CBF as [27]

zm(t, f) = x(t, f)−GH
m(f)x(t−D, f), (3)

ym(t, f) = qH
m(f)zm(t, f), (4)

where

x(t−D, f) =
[
xT(t−D, f) . . . xT(t− L+ 1, f)

]T
, (5)

is a M(L −D) × 1 vector consisting of past samples of the mixture
signals.

The left-hand sides of (3) and (4) correspond to the mth
component of y(t, f) in (2) with qm(f) = wm(0, f) and
Gm(f)qm(f) = −[wT

m(D, f), . . . ,wT
m(L − 1, f)]T, where

wm(0, f) and wm(τ, f) are, respectively, the mth column of
WH(0, f) and WH(τ, f) for τ = D, . . . , L − 1. Therefore,
Gm(f) and zm(t, f) are indeed the prediction filter of WPE
and the dereverberated signal of the mth output, respectively.
Q(f) = [q1(f), . . . ,qM (f)]H equals to W(0, f) representing a
demixing matrix to separate all signals from dereverberated signals.

3. PROPOSED METHOD

3.1. Probabilistic model

Instead of attempting to separate all the active sources simultaneously
from the observed mixtures, we consider in this work to extract only
one source of interest (SOI) or some SOIs in strong reverberation
conditions. Without loss of generality, let us consider to extract K
of the N sources (K ≤ N ). The separated signal vector y(t, f) and
the demixing matrix Q(f) can then be expressed as

y(t, f) =

 ySOI(t, f)
yRS(t, f)
n(t, f)

 , Q(f) =

 QSOI(f)
QRS(f)
B(f)

 , (6)

where ySOI(t, f) ∈ CK×1, yRS(t, f) ∈ C(N−K)×1, and n(t, f) ∈
C(M−N)×1 are, respectively, the separated SOIs, the other remaining
sources (RS), and the background (BG) noise, and QSOI(f) ∈
CK×M , QRS(f) ∈ C(N−K)×M , and B(f) ∈ C(M−N)×M are the
filters to extract the corresponding signals.

Based on the MAP criterion to derive the demixing filters [19],
the following cost function is formulated

J =− 2T
∑
f

log | detQ(f)| −
∑
t,m

log p
(
y
m
(t)

)
−

∑
t

log p (n(t))− log p(Q), (7)

where y
m
(t) = [ym(t, 1), . . . , ym(t, F )]T for 1 ≤ m ≤ N

is the extracted signal vector of the mth source, and, analogously,
n(t) = [nT

N+1(t), . . . ,n
T
M (t)]T denotes the remaining BG signals,

Q = {Q(f)}Ff=1 is the set of all extraction filters, and p(Q) denotes
the prior of the extraction filters.

The source m, 1 ≤ m ≤ N , is assumed to follow a time-varying
complex circular Gaussian distribution and the BG signal m′,N +
1 ≤ m′ ≤ M , is assumed to follow a multivariate standard complex
Gaussian distribution. Under the I.I.D. assumption, the cost function
in (7) can be rewritten as

J (Θ) =−2T
∑
f

log | detQ(f)|+
∑
t,f,m

(
log rm(t)+

|ym(t, f)|2

rm(t)

)
+

∑
t,f,m′

|nm′(t, f)|2 −
∑
f

log p(Q(f)). (8)

where Θ = {ΘG,ΘQ,Θr} contains all dereverberation matrix
Gm(f), separation matrix Q(f) and the broadband time-varying
variance rm.

In practical situations, the precise a priori information for
the demixing matrix is generally not accessible. One way to
circumvent this issue is though using some information, e.g., the
DOA information of the target sources, that can be estimated. This
approach is adopted in this work and we investigate how to incorporate
the estimates of the SOI DOAs into the priors of the SOI filters, i.e.,
p(QSOI(f)). Specifically, a prior based on the Euclidean distance
between the extraction filter and the free-field steering vector of the
SOIs [16, 18, 19] is applied to the K sources, which can be expressed
using a negative log-likelihood form as follows

−
∑
f

log p(QSOI(f))=
∑
f,m

λm∥qm(f)−d(f, θm)∥22+const., (9)

where λm is a weighting coefficient, θm is the DOA of the mth SOI,
and d(f, θm) is the steering vector associated with the mth SOI. For
the details of derivation, please refer to [18, 19]. For a uniform linear
array (ULA), the steering vector can be written as

d(f, θm) =
[
1 e−jψm(f) · · · e−j(M−1)ψm(f)

]T
, (10)

where

ψm(f) =
2π(f − 1)fsd

cNF
cos θm, (11)

j is the imaginary unit, fs is the sampling frequency, NF is the length
of the fast Fourier transform (FFT) in STFT, d is the microphone
spacing, and c is the speed of sound in air.

The flowchart of the proposed algorithm is shown in Fig. 1,
which can be viewed as a generalization of the geometric constrained
BSS/BSE, the joint optimization of WPE and BSS/BSE, and the
traditional IVA since the cost function used in the latter three
algorithms are particular cases of the cost function given in (8).
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Fig. 1. Flowchart of the proposed method.

Specifically, there are three particular cases for the cost function given
in (8).

• If D = L, in this case, the cost function in (8) degenerates to
the one used in the typical geometric constrained BSS/BSE as
in [19].

• If the uninformative prior of SOIs is used, in this case, (8)
degenerates to the cost function for joint optimization of WPE
and BSS/BSE as in [28–30].

• If both the previous conditions are satisfied and K = N =
M , the cost function in (8) degenerates to the one used in the
ordinary IVA [10].

3.2. Optimization algorithm

To optimize the cost function in (8), the coordinate ascent method [21]
is used to iteratively update every parameter set in {ΘG,ΘQ,Θr}
while fixing the others until convergence.

3.2.1. Update of ΘG

For the WPE parameters ΘG, if we fix the other parameters and ignore
the constant terms, the cost function in (8) can be rewritten as

J (ΘG)=
∑
f,m

∥∥(Gm(f)−R−1
m (f)Pm(f)

)
qm(f)

∥∥2

Rm(f)
, (12)

where

Rm(f) =
∑
t

x(t−D, f)xH(t−D, f)/rm(t), (13)

Pm(f) =
∑
t

x(t−D, f)xH(t, f)/rm(t), (14)

and ∥x∥2R ≜ xHRx. Note that the update

Gm(f)← R−1
m (f)Pm(f) (15)

minimizes (12).

3.2.2. Update of ΘQ

By fixing the WPE parameters, the cost function (8) is then equivalent
to the cost function in [19]. Hence, by means of the MM algorithm, the
original cost function is replaced by a simpler surrogate cost function,
that is

J (ΘQ) =− 2T
∑
f

log |detQ(f)|+
∑
t,f,m

qH
m(f)Um(f)qm(f)

+
∑
f,m

λm ∥qm(f)− d(f, θm)∥22 , (16)

where

Um(f) =
1

T

∑
t

zm(t, f)zHm(t, f)/rm(t), (17)

and zm(t, f) is the mth dereverberated signal in (3). Note that the
cost function above is equivalent to that of the spatially informed
source extraction algorithm as in [16, 19] except from the observed
signal zm(t, f). Hence, the IP-based update rules can be applied for
updating Q(f) [16]

pm(f) =
(
Q(f)Ûm(f)

)−1

em, (18)

p̃m(f) = λmÛ−1
m (f)d(f, θm), (19)

hm(f) = pH
m(f)Ûm(f)pm(f), (20)

h̃m(f) = pH
m(f)Ûm(f)p̃m(f), (21)

qm(f)←


pm(f)√
hm(f)

+ p̃m(f), if h̃m(f) = 0,

h̃m(f)
2hm(f)

(
−1+

√
1+ 4hm(f)

|h̃m(f)|2

)
pm(f)+p̃m(f), else,

(22)

where Ûm(f)=Um(f)+λmIM , IM ∈ RM×M is an identity matrix,
and em is the unit vector with the mth element being 1 and the others
being 0. For the remaining sources, the extraction filters are updated
by regular IP updates rules as [10]

qm(f)← (Q(f)Um(f))−1 em, (23)

qm(f)← qm(f)/
√

qH
m(f)Um(f)qm(f), (24)

where one can check that (23) and (24) are equal to (18)–(22) for
λm = 0. Since we do not attempt to separate the BG components,
B(f) can be decomposed based on the orthogonal constraints as
proposed in [11] as

B(f) = [J(f),−IM−N ] , (25)

where J(f) ∈ C(M−N)×N and IM−N is an identity matrix.
By assuming orthogonality of the desired and background signal
subspaces, J(f) is updated as

B(f)←
( (

ENC(f)QAS(f)
) (

ESC(f)QAS(f)
)−1

−IM−N

)
, (26)

where ES = [IN ,0N×(M−N)], EN = [0(M−N)×N , IM−N ].
QAS(f) = [(QSOI(f))T, (QRS(f))T]T contain the extraction filters
for all active sources (AS), and C(f) is the covariance matrix of
observed signals.

3.2.3. Update of Θr

After updating the extraction matrix Q(f), the time-varying variance
rm(t) for all the active sources and BG signals can be updated by
using the output of (4) as

rm(t)←
{

1
F

∑
f |ym(t, f)|2, if 1 ≤ m ≤ N,

1, else.
(27)

Then, the updated rm(t) can be applied to iteratively update again
the parameters ΘG and ΘQ according to (13), (14), and (17).

3.2.4. DOA Updates for the SOIs

Due to the fact that the target source DOAs are used to form the prior
through (11), good estimation of DOAs is essential for the presented
algorithm to extract the target SOIs. However, the estimates of
DOAs in multiple-source scenarios are generally biased, especially in
reverberant and noisy environments [31]. To ensure high accuracy for
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Fig. 2. Simulation setup with a ULA of 6 microphones and 4 sources.

DOA estimation, an additional DOA estimation module based on the
Capon method [32] is adopted during the iterative update so that the
DOA estimation error decreases iteratively. In every iteration, a multi-
channel back-projection [33] is applied to calculate the covariance
matrix associated with every SOI for corresponding DOA estimation,
which has been discussed in our earlier work [20].

4. SIMULATIONS

4.1. Simulation setup

The performance of the proposed algorithm is verified through
simulations in this section. The observed signals are simulated
by convolving the speech signals from the test set of the TIMIT
database [34] with the room impulse responses (RIRs) from the
RWCP dataset [35] (see Fig. 2 for the geometric setup of the
recordings). Room reverberation time T60 from 300 ms and 600
ms are simulated and white Gaussian noise is added to control the
signal-to-noise ratio (SNR) to 30 dB. A ULA consisting of M = 6
omnidirectional microphones with an inter-element spacing of 5.66
cm is used, and the number of simultaneously active sources isN = 4
. The azimuth angles of the four sources are 50◦, 70◦, 110◦, and 130◦,
which are all 2-meter away from the center of the microphone array.

Clean signals are randomly selected from the TIMIT database and
then concatenated to form the source signals which are 10-s long.
Twenty-five mixtures are then generated. To demonstrate the ability
of extracting any number (K ≤ M ) of sources, two scenarios are
evaluated: one with only a single SOI and the other with 4 SOIs. All
signals are sampled at 16 kHz. The STFT is implemented with the
von Hann window of 128-ms long and a window shift of 32 ms. The
improvement of the signal-to-distortion ratio (SDR) [36] (denoted by
∆SDR) is used as the metric for evaluating the extraction performance
where the reference signals are obtained by convolving the speech
signals with the RIRs truncated to a length of 32 ms.

The extraction performance of the presented algorithm (denoted
as WPE-GCIVE) is compared to the IVE [12], the joint optimization
algorithm of WPE and IVE (WPE-IVE) [29, 30], and the classical
geometric constrained independent vector extraction (GCIVE) [19].
Note that IVE and WPE-IVE do not work in the case when K = 1
as they can not distinguish the target signal and interferences. So,
in this case, only GCIVE is compared. The weighting parameter of
the geometric constraint is decreased over iterations according to [16]
with the initial value set to 1, the delay D and the length L are set
to 2 and 4, respectively. Taking the computational complexity into
account, the parameters of WPE filters are updated every 10 iterations.

(a) (b)

Fig. 3. Comparison of the average ∆SDR (dB) achieved by the
studied methods with the different number of SOIs K in reverberant
environments: (a) 300 ms, and (b) 600 ms.

T60 Initialization GCIVE WPE-GCIVE

300 ms
9.73

4.88 4.56
600 ms 14.41 7.91

Table 1. The average angular localization error (◦) in different
reverberation conditions with K = 4 SOIs.

4.2. Results and discussion

The extraction performance of the presented algorithm and the
baselines under different reverberation times and different numbers
of SOIs are presented in Fig. 3. For the GC-based methods, either
the true DOAs are directly used as priors, or DOAs are estimated
and refined during the parameter updating with a rough initialization,
which is given by adding a random error uniformly distributed in
[−17.5◦, 17.5◦] to the ground truth. The average angular localization
errors at initialization or after update through extraction approaches
are shown in Table 1.

From these simulation results, one can see that including WPE
yields small improvements for DOA estimation if reverberation is
light (e.g., T60 = 300 ms) since the angular localization error is
already acceptable for source extraction. However, as reverberation
becomes stronger (T60 = 600 ms), the original GC-based methods
cannot improve the performance since the bias of the angular
localization error increases and the geometrical constraints fail to
select the SOIs. By incorporating WPE into the GC-based method,
the proposed algorithm only reduces the average DOA estimation
error for the SOIs but also improves the extraction performance (see
Fig. 3) as compared to the baseline methods. Moreover, because the
proposed method can extract an arbitrary number of SOIs satisfying
K ≤M , the outer permutation is solved naturally.

5. CONCLUSION

This paper presented a spatially guided framework, which jointly
optimizes the WPE and geometric constrained source extraction
cost functions through the source-wise CBF factorization. The
source DOA estimation is also refined during the iterations to further
improve the source extraction performance. The presented algorithm
works well in highly reverberant environments and simulation results
demonstrate the superiority of the proposed method over the compared
baseline methods, which are the state-of-the-art source separation
methods reported in the literature.
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