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Abstract—We provide an example of a distribution preserving
source separation method, which aims at addressing perceptual
shortcomings of state-of-the-art methods. Our approach uses un-
conditioned generative models of signal sources. Reconstruction is
achieved by means of mix-consistent sampling from a distribution
conditioned on a realization of a mix. The separated signals follow
their respective source distributions, which provides an advantage
when separation results are evaluated in a listening test.

Index Terms—generative source separation, generative model-
ing, Langevin sampling

I. INTRODUCTION

Reconstructions of source signals generated by state-of-the-
art audio separation algorithms often sound unnatural. Even
a scheme with good objective performance may fall short
in a listening test, since its reconstruction may be deemed
non-plausible by a human observer. This problem is also dis-
cussed in the context of signal enhancement, where a trade-
off between distortion and plausibility of the reconstruction
is recognized [1]. In this paper, we provide an example of
a distribution preserving source separation (DPSS) scheme,
where we require that the reconstructed signal components
obey their respective source distributions.

Once a mixture of audio signals is created, some informa-
tion about its components is inevitably lost. Regression-based
separation schemes [2] tend to suppress reconstruction when
there is an uncertainty about the source. This can, for example,
introduce spectral holes, which can be sometimes easily de-
tected while listening, even though the objective performance
is high [3].

Generative separation methods were introduced in [4]–[6],
where schemes operate on magnitude spectra. Such a setting is
generally suboptimal, since it discards the phase information,
which may introduce artifacts [7]. A post-processing approach
to improve the perceptual performance of spectrogram-based
separation was proposed in [8]. In the context of audio sep-
aration, generative modeling in the signal domain currently
provides the state-of-the-art reconstruction quality [9], [10].

The approach proposed in this paper stems from [9], which
uses generative unconditional models of signal components
in the construction of a separation scheme. While the sepa-
ration scenarios of [9], [10] are toy-like (because these ap-
proaches assume that generative models of all the mixture
components are available), they still provide a clean testing
ground for the proposed separation approach. In our case, we

focus on employing high-quality generative models to provide
in-distribution reconstructions. Specifically, we use generative
models operating in a quadrature modulated filter (QMF) bank
domain [11] that were designed to deliver high quality audio
synthesis. Our goal is to make the separated components per-
ceptually indistinguishable from observations of signals gen-
erated from their sources (as illustrated in Fig. 1). We choose
separation of piano-speech mixtures to facilitate comparison
with [9], but also to demonstrate that the principle works with
diverse signal categories.

There are many objective performance measures for evalu-
ating source separation methods [12]–[14]. However, it is also
commonly acknowledged that such measures do not reliably
predict the perceptual performance [15]. Here we focus on
evaluating the separation results in a listening test. We use the
MUSHRA methodology [16], as normally applied for evalua-
tion of audio coding schemes.

The paper is organized as follows. We describe the sepa-
ration method in Section II. The approach involves usage of
source models capable of providing in-distribution reconstruc-
tions of the sources. We describe a structure of such a model in
Section III. The results of objective evaluation of the scheme
and results of the listening tests are provided in Section IV.

II. SEPARATION METHOD

An observation of a downmix y = g(x) where g : RS×N →
RN is the result of a mixing operation of S independent com-
ponents contained in a realization of a source vector x. The
goal is to reconstruct the components in x by sampling from
a trained model p(x|y). We follow the approach of [9], where
Langevin sampling facilitates working with the log gradient
of the posterior of the joint distribution:

∇x log p(x,y) = ∇x log p(y|x) +∇x log p(x). (1)

Such a sampling scheme can be implemented by using a score
matching model [10], [17], [18], where ∇x log p(x) would
be the score models for the components of the mix (which
would be the only trainable parts of the scheme). Alternatively,
the gradients can be computed in runtime by using trained
generative models p(x).
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Fig. 1. Spectrograms: (a) Input mixture (speech+piano); (b) Separated piano (DPSS); (c) Separated speech (DPSS).

A. Langevin sampling

Due to (1), the Langevin sampling for sufficiently small η
can be implemented as:

xti = xti−1
+ η∇x log p(xti−1

|y) +
√

2ηεti (2)

= xti−1
+ η∇x

(
log p(xti−1

) + log p(y|xti−1
)
)
+
√
2ηεti

where i = 1, ..., I is the iteration number, t ∈ U(0, 1) de-
scribes the algorithmic time going from t0 = 0 to tI = 1,
and ε ∈ RS×N is a vector of S noise realizations sampled
from N (0, I). The scheme of [9] used auto-regressive models
to describe p(x). However, in that case x was discrete and
therefore non-differentiable. This problem was alleviated by
sampling from a smoothed version of x, where x̃ = x+ σmz
and z ∈ RS×N consisting of S noise realizations sampled from
N (0, I), for σ1 > · · · > σM . This requires using a collection
of M models for each source. Here, instead, we use noisy-
predictors described in Section II-C, where there is only a
single model per source.

B. Auto-regressive source model

While the separation approach is compatible with modern
score matching models such as [18], [10], here, we use auto-
regressive (AR) modeling of signals (as in [9]), since they
seem to have good enough performance for our task. However,
our AR models operate in a filter-bank domain on a continuous
signal representation. It is known that time-domain AR mod-
eling of signals that are close to being a sum of AR processes
(e.g., piano) is not efficient [19]. The decorrelating property
of the filter-bank seems to aid the model efficiency for such
complex sources in our experiments.

In our model, a probability distribution of a random variable
represented by a matrix of time-frequency tiles of a signal
representation provided by the filter-bank is given by a product
of probabilities of conditionally independent frames:

p(X) =
∏
n

p(xn|X<n), (3)

where xn denotes the frequency coefficients at time frame n
and X<n comprises past time frames. This model structure
resembles an MDCT model of [20], but in this work we use

another implementation designed for a real-valued QMF. We
discuss implementation of the model in Section III.

C. Noisy predictor

The Langevin sampling method depends on providing a
description of p(xti). This means that we must have models
that are able to describe the probability of x in between x0

(noise) and x1 (source). Here we perform AR modelling for
noisy sources x̃ = x + σz with z ∼ N (0, I) conditioned on
the noise level, i.e. p(x̃|σ). This helps to have more control
over the Langevin sampling algorithm, thus modifying (2) to

x̃ti = x̃ti−1
+ η∇x̃ log p(x̃ti−1

|y, σti) +
√
2ηεti (4)

= x̃ti−1
+ η∇x̃

(
log p(x̃ti−1

|σti) + log p(y|x̃ti , σti)
)
+

+
√

2ηεti .

Writing the linear function g as g(x) = aTx we have that

y = g(x) = g(x̃− σz) ∼ N (g(x̃), σ2‖a‖2I), (5)

where a ∈ RS defines the weights for mixing the sources.
The proposed construction eliminates the need for training a
sequence of de-noising models as in [9].

D. Scheduler

Usually the steps σt0 > σt1 > · · · > σtI in (4) are geo-
metrically spaced by γ = σti+1/σti with t0 = 0 and tI = 1.
Typically, (4) is applied using annealed Langevin sampling
(ALS) [21] with η = εησti/σtI = εηγ

i−I where εη is a
hyperparameter.

In our scheme we perform Langevin sampling through con-
sistent annealed sampling (CAS):

x̃ti = x̃ti−1
+ ασ2

ti∇x̃ log p(x̃ti−1
|y, σti) + βσti+1

εti (6)

= x̃ti−1
+ βσti+1εti+

+ ασ2
ti∇x̃

(
log p(x̃ti−1

|σti) + log p(y|x̃ti−1
, σti)

)
,

where α and β can be re-parameterized as shown in [22]
by α = 1 − γη , β =

√
1− γ2(η−1) with η ≥ 1 for i ∈

{1, 2, . . . , I − 1}, and α = 1, β = 0 for i = I (t = 1).
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(a) (b) (c)

Fig. 2. Source model operation: (a) Generation example; (b) Prediction network; (c) Conditioning network

III. SOURCE MODEL

We designed an auto-regressive model that operates in the
QMF domain, predicting noisy frames conditioned on the noise
level, i.e. the model performs

p(X̃|σ) =
∏
n

p(x̃n|X̃<n, σ) (7)

with X̃ being the result of adding Gaussian noise of power
σ2 to the clean signal X. This is a simplified version of the
model in [20] where they do frequency prediction within a
time frame. Here, we predict the whole frame in one shot.

A high-level view on the model architecture is shown in
Fig. 2. Here, we highlight the two aspects of the model: its
predictive structure and noise-level conditioning.

Prediction. Most natural occurring audio signals have cer-
tain correlation in time and frequency, examples of these are
the tempo of a song and the timbre of a musical instrument, re-
spectively. To exploit this correlation we designed the model to
perform prediction of vectors. Looking at Fig. 2a, to predict the
samples x̃n (yellow) in frame n, the model takes L frames in
the past X̃[n−L,n−1] (red). These samples are passed through
a convolutional layer and the output is added to the output of
the conditioning network. The resulting sum goes into an RNN
that handles coherence over time. Then the output of the RNN
is put through an MLP layer consisting of 4 linear layers with
ReLUs in between them. The output of the final linear layer
contains the parameters necessary to create the multivariate
distribution p(x̃n|X̃<n, σ). The prediction network is shown
in Fig. 2b.

Noise-level conditioning. The conditioning network shown
in Fig. 2c takes the noise level σ in dB and converts it into
Random Fourier Features (RFF) [23]. These features are then
passed through a 4-layer MLP with ReLUs in between each
linear layer.

IV. EVALUATION

We evaluated the proposed method on mixtures created from
piano and speech signals. The piano signals came from the
Supra database [24], while the speech excerpts came from the
VCTK database [25]. This selection allows us to demonstrate
the gain in objective and subjective performance, when the
separation framework of [9] is configured towards source dis-
tribution preservation by employing high-quality source mod-
els.

A. Model setup and training

We used a QMF bank of 64 channels. The model was
designed to predict 1 frame at a time by looking at 10 frames in
the past (L = 10 in Fig. 2a). We opted for employing a single-
layer LSTM as RNN. All elements in the model use a hidden
dimension of size 1024 and the output stage of the last linear
layer in Fig. 2b produced 128 parameters. These parameters
represent means µ and scales s used to construct Logistic
distributions Log(x;µ, s) = 1

4s sech2
(
x−µ
2s

)
for each of the 64

QMF channels in the frame. We opted for using the Logistic
distribution due to its smooth and range-limited derivative
∂
∂x logLog(x;µ, s) = − 1

s tanh
(
x−µ
2s

)
. This property proved

beneficial when computing ∇X̃ log p(X̃|σ) for the application
of (6).

We trained source models using the VCTK speech and Supra
piano datasets. Each model had approximately 17M parame-
ters. The datasets were randomly divided into training, valida-
tion and test sets, consisting of 80-10-10 percent of the data,
respectively. All items were adjusted to a length of 8 seconds
by concatenation or truncation. We trained each model using
NLL loss for 1M iterations, using the ADAM optimizer [26],
starting with a learning rate of 1e-4 and reducing it with a
cosine scheduler [27] to a final value of 1e-6. Each iteration
consists of a batch of 64 items, using a sequence length of
1 second. Every file in the batch was corrupted by adding
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TABLE I
SI-SDR [dB] FOR IRM, PNF AND THE PROPOSED METHOD (DPSS)

IRM PNF [9] DPSS

speech 16.25 15.93 22.43
piano 13.32 12.87 19.59
mix 64.52 38.92 63.34

Gaussian noise with power distributed uniformly in the range
[-90, 0] dB. We kept this noise level for the entire duration
of the file, such that 8 consecutive iterations belonged to the
same items and noise levels.

When performing source separation, we used the CAS sched-
uler (6) starting from σ0 = 0 dB to σ1 = −90 dB, using
η = 90 for I = 1500 iterations. We noted that the results
varied significantly depending on the power level of the indi-
vidual sources. Therefore, we decided to normalize the mix to
a level of -23 dB power before applying (6), and de-normalize
the estimated sources afterwards.

B. Objective performance

We evaluated the separation performance by using SI-SDR
[14] as an objective measure. We constructed a regression-
based benchmark with an ideal ratio mask (IRM) computed
on per-bin basis with a 1024 samples stride. We used a time-
domain scheme of [9] (PNF), which is based on WaveNet [28]
operating with a discrete output stage (8-bit PCM), where we
computed the SI-SDR with respect to the original signal (16-
bit PCM). Finally, we included the proposed scheme. Results
of these three approaches are shown in Table I for speech,
piano, and the mix. It can be seen that the proposed scheme
has a superior performance for both source categories. But as
expected, an ideal regression scheme has the best mix consis-
tency. The mix consistency of the PNF condition is limited by
the discrete output stage of its generative models.

C. Listening test

We analyzed the performance of the separation methods by
two MUSHRA [16] tests. We created a set of test mixture
signals by using random items from test sets of the respective
source models.1 The listeners listened separately to separated
components for each of the sources in separate sessions, and
they were not exposed to the mixture signals. Hence, the
setup resembled the design of listening tests commonly used
for evaluation of audio codecs. While this way of testing is
challenging for separation algorithms, it allows us to test the
hypothesis that the proposed approach can operate in the high
quality regime.

The conditions in the tests included: a hidden reference, a
3.5 kHz low-pass anchor (LP35), and the signals extracted by
the three separation methods. The anchor signals were created
from the references (not from the mixture signals). 11 expert
listeners participated in both listening tests.

1Excerpts from the test are available here: https://dpss-demo.github.io/

The results of the listening test for separated piano are
shown in Fig. 3 and the ones for separated speech are shown
in Fig. 4. For both source categories, it can be seen that DPSS
provides a significant perceptual advantage, and outperforms
the benchmarks. The unusually high score of the low pass
anchor in the piano test is due to fact that piano signals in the
Supra database have band-limited characteristics.
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Fig. 3. Listening test results for Supra piano (11 listeners, 95% confidence
intervals, Student’s t-distribution).
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Fig. 4. Listening test results for VCTK speech (11 listeners, 95% confidence
intervals, Student’s t-distribution).

V. CONCLUSION

We conclude that preservation of source distributions can be
a viable strategy for separation of audio mixtures, as it facili-
tates generation of plausible reconstructions of the sources. We
demonstrate its advantage by performing MUSHRA tests in a
rigorous setup commonly used for evaluation of audio codecs.
Furthermore, our results indicate that the proposed filter-bank
domain model with a continuous output stage can significantly
outperform the time-domain benchmark with a discrete output
stage.
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