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Abstract—This paper describes an efficient unsupervised learn-
ing method for a neural source separation model that utilizes a
probabilistic generative model of observed multichannel mixtures
proposed for blind source separation (BSS). For this purpose,
amortized variational inference (AVI) has been used for directly
solving the inverse problem of BSS with full-rank spatial covari-
ance analysis (FCA). Although this unsupervised technique called
neural FCA is in principle free from the domain mismatch prob-
lem, it is computationally demanding due to the full rankness of
the spatial model in exchange for robustness against relatively
short reverberations. To reduce the model complexity without
sacrificing performance, we propose neural FastFCA based on
the jointly-diagonalizable yet full-rank spatial model. Our neu-
ral separation model introduced for AVI alternately performs
neural network blocks and single steps of an efficient iterative
algorithm called iterative source steering. This alternating archi-
tecture enables the separation model to quickly separate the mix-
ture spectrogram by leveraging both the deep neural network
and the multichannel optimization algorithm. The training objec-
tive with AVI is derived to maximize the marginalized likelihood
of the observed mixtures. The experiment using mixture signals
of two to four sound sources shows that neural FastFCA outper-
forms conventional BSS methods and reduces the computational
time to about 2 % of that for the neural FCA.

Index Terms—blind source separation, amortized inference,
joint-diagonalization, neural source separation

I. INTRODUCTION

Sound source separation forms the basis of various machine
listening systems including distant speech recognition [1]–[3]
and sound event detection [4], [5]. Neural source separation
has achieved excellent performance thanks to the expression
power of deep neural networks (DNNs) trained with a large
number of pairs of mixture signals and their corresponding
source signals [6]–[8]. However, such supervised training suf-
fers from domain mismatch and a lack of source signals in tar-
get environments. As a promising alternative, blind source sep-
aration (BSS) [9]–[11] has thus been investigated to work with
little prior information about the sources and microphones.

Modern BSS methods are based on probabilistic generative
models of multichannel mixture signals [9]–[12]. Such a proba-
bilistic model consists of a source model representing the power
spectral densities (PSDs) of the sources and a spatial model rep-
resenting the spatial covariance matrices (SCMs) of the sources.
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Fig. 1: The overview of the proposed neural FastFCA.

Multichannel non-negative matrix factorization (MNMF) [10],
for example, is based on an NMF-based source model assum-
ing the low-rankness of the PSDs and a full-rank spatial model
assuming the full-rankness of the SCMs. While the full-rank
SCMs can deal with small source movements and reverberation,
their estimation is often unstable and requires an expensive
computational cost due to their too-high degrees of freedom.
FastMNMF [11], [13] mitigates this problem by assuming the
source SCMs to be jointly-diagonalizable (JD). The JD SCM
is also full-rank but is represented by a weighted sum of rank-
1 SCMs common to all the sources. This constraint is reported
to efficiently reduce the computational cost and improve the
separation performance compared to the original MNMF [11].

To represent complex structures of source spectra, neural
source models using variational autoencoders (VAEs) [14] have
been proposed [15]–[18]. For example, a multichannel VAE
(MVAE) [17] replaces the source model of MNMF with the
decoder of a VAE pre-trained on isolated source signals. This
source model can also be trained only with mixture signals
by neural full-rank spatial covariance analysis (FCA) [18].
Neural FCA trains the source generative model (decoder) by
introducing an inference (encoder) model that estimates latent
features of the source model from a multichannel mixture. The
decoder and encoder models are jointly trained to maximize
the likelihood of the MVAE for training data of multichannel
mixtures. The neural FCA was reported to perform on par with
the supervised MVAE for speech separation [18].

In this paper, we propose a BSS method called neural Fast-
FCA based on the integration of the JD spatial model and the
neural source model (Fig. 1). The original neural FCA estimates
the full-rank SCMs by an expectation-maximization (EM) al-
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gorithm, which requires a high computational cost. In contrast,
we assume the JD spatial model and extend the inference model
to estimate the JD SCMs quickly in the network. Specifically,
we introduce a network building block that diagonalizes an ob-
served mixture by an efficient algorithm called iterative source
steering (ISS) [19], [20]. We alternately stack the ISS-based di-
agonalization blocks and DNN blocks such that the intermedi-
ate diagonalization (quasi-separation) results can be used to esti-
mate the latent source features. The networks are jointly trained
to separate unseen mixture signals in an unsupervised manner.

The main contribution of this study is to integrate the state-
of-the-art BSS techniques of the JD spatial model [11], the neu-
ral source model [18], and the ISS-based inference model [19].
This combination enables the proposed method to train the in-
ference (separation) model and the neural source model in an
unsupervised manner to achieve high separation performance
and a small computational cost. The experimental results with
simulated mixture signals of two to four speech sources demon-
strate that our blind method outperforms conventional BSS
methods. In addition, our method reduces the computational
cost to about 2 % of that for the original neural FCA.

II. BACKGROUND

This section first briefly overviews the existing BSS methods
and then introduces a neural BSS method called neural FCA.

A. Blind source separation

BSS methods typically assume that an M -channel mixture
signal xft ∈ CM is a sum of N source signals snft ∈ C:

xft =

N∑
n=1

anfsnft, (1)

where t = 1, . . . , T and f = 1, . . . , F are time and frequency
indices, respectively, and anf ∈ CM is the steering vector for
source n. Each source signal snft is then assumed to follow a
zero-mean complex Gaussian distribution as follows:

snft ∼ NC (0, λnft) , (2)

where λnft ∈ R+ represents the PSD of source n. By marginal-
izing the source signal snft, the following multivariate Gaus-
sian likelihood is obtained:

xft ∼ NC

(
0,

N∑
n=1

λnftHnf

)
, (3)

where Hnf = anfa
H
nf ∈ SM×M

+ is an SCM for source n at
frequency f . BSS is performed by estimating the λnft and
Hnf to maximize this likelihood with sufficient assumptions
to effectively restrict the model’s redundant flexibility. Indepen-
dent low-rank matrix analysis (ILRMA) [21], for example, as-
sumes λnft to be low-rank for solving frequency permutation
ambiguity. MNMF [12] replaces Hnf with a full-rank SCM
for allowing small source movements and reverberations.

The computational cost for estimating the full-rank SCMs
can be efficiently reduced by using the JD SCMs [11], [13].

Specifically, this formulation represents SCMs Hnf by a diag-
onalizer Qf ∈ CM×M common for all the sources and diago-
nal elements wn ∈ RM

+ for each source as follows:

Hnf = Q−1
f diag(wn)Q

−H
f . (4)

The diagonalizer Qf is optimized to maximize Eq. (3) with
an iterative projection [9] or ISS [22] algorithm, and wn is
optimized with a multiplicative update rule [11]. FastMNMF
combines this JD spatial model with a low-rank source model
and has been reported to perform better than MNMF while
working at a similar computational cost to ILRMA [11].

B. Neural full-rank spatial covariance analysis

A powerful way to represent source signals is to utilize a
DNN that can precisely capture their complex spectra [15]–
[17]. The deep spectral model [15]–[17] assumes that the PSD
λnft is generated by a latent source feature znt ∈ RD and a
non-linear function (i.e., DNN) gθ,f : RD → R+ as follows:

λnft = gθ,f (znt), (5)

where θ is a set of the network parameters of gθ,f . The latent
source feature znt is typically assumed to follow the standard
Gaussian distribution:

znt ∼ N (0, I) , (6)

and is supposed to represent the features of source spectra,
such as pitches and envelopes.

The neural FCA [18] trains the neural source model gθ,f as a
decoder of a VAE by introducing an inference (encoder) model
with network parameters ϕ to estimate the posterior distribu-
tion qϕ(znt | X) from an observed mixture X ≜ {xft}F,T

f,t=1.
Let Z ≜ {znt}N,T

n,t=1 and H ≜ {Hnf}F,N
f,n=1 be the sets of la-

tent features and SCMs, respectively. This method assumes
the generative model of multichannel mixtures with Eqs. (3),
(5), and (6). Based on this generative model, the encoder and
decoder are jointly trained in an unsupervised manner to max-
imize the following evidence lower bound (ELBO):

L = Eqϕ [log pθ(X | Z,H)]−DKL[qϕ(Z | X) | p(Z)], (7)

where Eqϕ [·] and DKL[· | ·] are the expectation by the posterior
qϕ and the Kullback-Leibler (KL) divergence, respectively.
The network parameters θ and ϕ are optimized by stochastic
gradient ascent [23], and the SCMs Hnf are optimized at each
network update with an EM algorithm [24]. The maximization
of the ELBO corresponds to the maximization of the log-
marginal likelihood p(X | H), and can be considered as BSS
performed for the training mixture signals.

Once the networks are optimized, they are used to separate
unseen mixture signals. Neural FCA has been reported to
perform better than existing BSS methods including FastMNMF
and on par with the supervised MVAE in speech separation [18].
This method, however, requires a high computational cost for
estimating the SCMs. In addition, the separation performance
is limited because the inference network does not utilize the
intermediate separation results, which are usually utilized in
the conventional BSS methods during their iterative algorithms.
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Fig. 2: The block diagram of the inference model.

III. NEURAL FAST FULL-RANK SPATIAL
COVARIANCE ANALYSIS

We extend the original neural FCA with the JD spatial
model to reduce the computational cost without sacrificing
performance. In addition, we introduce an inference model
based on the tight integration of ISS-based blocks and DNN
blocks for quickly separating multichannel mixture signals.

A. Generative model of multichannel mixture signals

Our method called neural FastFCA is based on the JD spatial
model of Eqs. (3) and (4) and the neural source model of
Eqs. (5) and (6). The resulting generative model is as follows:

xft ∼ NC

(
0,Q−1

f

{
N∑

n=1

gθ,f (znt)diag(wn)

}
Q−H

f

)
. (8)

B. Inference model

The inference (separation) model of neural FastFCA esti-
mates SCM parameters Q ≜ {Qf}Ff=1 and W ≜ {wn}Nn=1

as well as the posterior distribution qϕ(Z | X) from an ob-
served mixture X. We utilize both the DNNs and multichan-
nel optimization techniques [19] for quick source separation.
Specifically, as shown in Fig. 2, the inference network esti-
mates the parameters by alternately performing B + 1 DNN
blocks and B ISS blocks within the network. The b-th ISS
block [19] updates the diagonalizer Qf ≜ [qf1, . . .qfM ]H by
iterating the following ISS update rule for m = 1, . . . ,M :

Qf ← Qf − [vfm1, . . . , vfmM ]TqH
fm, (9)

vfmm′ =


qH
fm′Ufm′qfm

qH
fmUfm′qfm

(if m′ ̸= m)

1− (qH
fmUfmqfm)−

1
2 (if m′ = m)

(10)

where Ufm ∈ SM×M
+ is an auxiliary SCM. This SCM is

calculated by the mixture xft and a TF mask m
(b−1)
ϕ,ftm′ ∈ [0, 1]

predicted by the (b− 1)-th DNN block:

Ufm′ =
1

T

T∑
t=1

m
(b−1)
ϕ,ftm′ · xftx

H
ft. (11)

Let Q
(b)
f be the output of the b-th ISS block. This update

rule converges to the maximum likelihood estimate of Qf by
using an appropriate mask m

(b)
ϕ,ftm′ and initial value Q

(0)
f [22].

The b-th DNN block, on the other hand, outputs the TF mask
m

(b)
ϕ,ftm′ and an internal feature h

(b)
ϕ,t (t = 1, . . . , T ) passed to

the next block. The input of the DNN block is an intermediate
diagonalized (quasi-separated) spectrogram x̃

(b)
ft ≜ Q

(b)
f xft ∈

CM concatenated with internal features h
(b−1)
ϕ,t .

After performing B ISS blocks and B+1 DNN blocks, the
last internal feature h(B)

ϕ,t is converted to qϕ(Z | X) and W with
an output (1×1-convolution) layer. The posterior distribution
qϕ(Z | X) is estimated as the following Gaussian distribution:

qϕ(Z | X)←
N,T,D∏
n,t,d=1

N
(
zntd

∣∣ µϕ,ntd, σ
2
ϕ,ntd

)
, (12)

where µϕ,ntd ∈ R and σ2
ϕ,ntd ∈ R+ are the network outputs

representing the mean and variance of Z, respectively. On
the other hand, the diagonal elements wn are estimated as a
normalized average of frequency-wise estimates w′

ϕ,fn ∈ RM
+ :

wn ←
1

F

F∑
f=1

1
1
M ∥w

′
ϕ,fn∥1

w′
ϕ,fn (13)

w′
ϕ,fn =

T∑
t=1

ωϕ,nft ◦
∣∣∣x̃(B)

ft

∣∣∣◦2 (14)

where ωϕ,nft ∈ [0, 1]M is a network output to represent an
M -channel TF mask, and ◦ and |·|◦2 indicate the element-wise
product and element-wise absolute square, respectively.

C. Amortized variational inference

The generative and inference models are trained by using
only multichannel mixture signals as an amortized variational
inference [14]. As in the original neural FCA, the training
objective for each mixture signal is an ELBO as follows:

L = Eqϕ [log pθ(X | Z,W,Q)]−DKL[qϕ(Z | X) | p(Z)],

where Q denotes the network output Q(B) for simplicity. The
KL term can be calculated in the same way as in [18] and used
to solve the frequency permutation ambiguity. The first term
of the ELBO, on the other hand, is calculated approximately
from the inference results Q, W, and qϕ(Z | X) as follows:

E[log pθ(X | Z,W,Q)] ≈ T

F∑
f=1

log
∣∣QfQ

H
f

∣∣
−

F,T,M∑
f,t,m=1

{
log ỹftm +

|x̃ftm|2

ỹftm

}
, (15)

where x̃ft ≜ [x̃ft1, . . . , x̃ftM ]T = Qfxft ∈ CM is the diag-
onalized observation, and ỹftm ≜

∑N
n=1 wnmgθ,f (z

∗
nt) ∈ R+

is the mixture PSDs with a sample z∗nt ∼ qϕ(znt | X). Because
all the operations for calculating the ELBO are differentiable,
the networks are optimized by using stochastic gradient ascent.

D. Source separation

Once the generative and inference models are trained, they
are used to separate unseen mixture signals. Specifically, the
inference model first estimates the model parameters Q, W,
and ẑntd = µϕ,nt(X). The source signal ŝnft is then estimated
by a multichannel Wiener filter as follows:

ŝnft ← uTYnftY
−1
:ftxft, (16)
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TABLE I: Separation performance in SDR, PESQ, and STOI and elapsed time for separation in seconds.

Method # of Elapsed Average K = 2 K = 3 K = 4
iters. time SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

MNMF 200 2.07 7.5 1.49 0.76 13.0 1.93 0.85 8.3 1.47 0.79 3.9 1.26 0.69
ILRMA 200 1.36 7.0 1.43 0.76 13.2 1.83 0.86 7.7 1.39 0.79 3.2 1.24 0.69
FastMNMF 200 1.81 9.3 1.60 0.80 15.3 2.12 0.89 10.1 1.59 0.83 5.3 1.32 0.74

Neural FCA (fix z) 200 2.67 8.9 1.71 0.79 15.2 2.28 0.89 10.1 1.75 0.83 4.5 1.36 0.71
Neural FCA 5 0.14 8.0 1.48 0.78 14.0 1.90 0.88 9.1 1.47 0.82 3.8 1.26 0.69
Neural FCA 10 0.26 8.6 1.53 0.79 14.6 1.98 0.89 9.7 1.52 0.83 4.3 1.28 0.70
Neural FCA 100 2.40 10.6 1.81 0.83 16.2 2.35 0.90 11.8 1.87 0.86 6.5 1.46 0.76
Neural FCA 200 4.77 11.1 1.88 0.84 16.4 2.41 0.90 12.2 1.95 0.87 7.2 1.52 0.78

Neural FastFCA (ours) – 0.09 11.6 1.85 0.85 17.4 2.41 0.91 12.7 1.90 0.88 7.5 1.50 0.79

where u is a one-hot vector representing a reference channel
(the first channel in this paper), and Y:ft =

∑N
n=1 Ynft is the

sum of source images Ynft = gθ,f (ẑntd)Q
−1
f diag(wn)Q

−H
f .

IV. EXPERIMENTAL EVALUATION

The proposed method was evaluated with simulated mixture
signals of various numbers of speech sources.

A. Dataset

We generated mixture signals of speech source signals by
following the spatialized WSJ0-mix dataset [25]. Each mixture
signal consisted of speech signals randomly selected from the
WSJ0 English speech corpus [26]. We used the same subsets
of speakers and utterances as in the WSJ0-mix dataset. In con-
trast to the WSJ0-mix dataset, the number of source signals
was randomly selected from K ∈ {2, 3, 4}. A 6-channel micro-
phone array (M = 6) with random configuration is located ran-
domly around the center of a room having random dimensions
between 5 m× 5 m× 3 m and 10 m×10 m× 5 m. The sound
sources were also randomly located while keeping the distance
between each other more than 1 m. The reverberation time
(RT60) was randomly sampled between 200 ms and 600 ms,
and the room impulse response for each source was simulated
with the image method. The speech signals were mixed at ran-
dom powers uniformly chosen between −2.5 dB and +2.5 dB.
White diffuse noise with a signal-to-noise ratio of 30 dB was
added to each mixture signal as background noise. We gener-
ated 20,000, 5,000, and 3,000 mixture signals for training, vali-
dation, and test sets, respectively. All the mixtures were derever-
berated by the weighted prediction error (WPE) method [27].

B. Experimental condition

The network architectures of the inference and generative
models were experimentally determined as follows. The infer-
ence model consisted of ISS and DNN blocks with B = 8.
Each DNN block consisted of a U-Net-like architecture [7],
[28] having five 256-channel 1D-convolutional layers. Each
layer had a kernel size of 5 and parametric rectified linear units
(PReLUs). The input feature of the 0-th DNN block was the
log-power spectrum and the inter-channel phase differences
of an input mixture xft. That of the b-th (b ≥ 1) DNN block
was a concatenation of the internal feature h

(b−1)
ϕ,t and a 512-

dimensional vector converted from the log-power spectrum of

x̃
(b−1)
ft with a 1 × 1-convolution layer. We obtained the TF

masks m
(b−1)
ϕ,ftm and ωϕ,nft with a sigmoid function and σ2

ϕ,ntd

with a softplus function. The generative model gθ,f , on the
other hand, consisted of three layers of 256-channel 1 × 1-
convolutional layers with PReLUs as in [18].

We trained the inference and generative models with an
Adam optimizer [23] for 200 epochs with a learning rate of
1.0× 10−3. The spectrograms were obtained using the short-
time Fourier transform with a window length of 512 samples
and a hop length of 128 samples. The training was performed by
splitting the spectrograms into 500-frame clips, and the batch
size was set to 128 clips. The dimension of the latent features
was set to D = 50. The number of sound sources was set to
N = 5, assuming the maximum number of sources and diffuse
noise (4 + 1). We performed the cyclic annealing of the KL
term in the ELBO [18], [29]. The diagonalizer was initialized
to an identity matrix Q

(0)
f ← I. These hyperparameters were

empirically determined using the validation set.
Our method was compared with existing BSS methods

and the original neural FCA. As BSS methods, we evaluated
MNMF [10], ILRMA [21], and FastMNMF [11]. The number
of sources for MNMF and FastMNMF was set to 5. The num-
bers of bases and iterations for all the methods were set to
16 and 200, respectively. The SCMs for MNMF were initial-
ized by ILRMA. The neural FCA [18] had the same generative
model gθ,f as our method, and its inference model consisted
of nine U-Net-like blocks to have the same number of blocks
as our method. We trained the neural FCA with the same hy-
perparameters as the proposed method. The EM inference for
SCMs Hnf was iterated 5 times in the training phase follow-
ing the literature [18]. At the test phase, the SCMs Hnf and
latent features znt were updated to fit the observation with the
EM rule and an Adam optimizer, respectively. The learning
rate for Adam was set to 0.2. We evaluated different numbers
of iterations (5, 10, 100, and 200 times) to assess how many
iterations were needed for the conversion.

The performance was evaluated in terms of the signal-to-
distortion ratio (SDR) [30] in dB, the perceptual evaluation of
speech quality (PESQ) [31], and the short-term objective intel-
ligibility (STOI) [32]. They were evaluated with K separated
signals having the highest powers in the separation results. We
also measured the elapsed time for separating a 5-second clip
on an NVIDIA V100 accelerator with Intel Xeon Gold 6148
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Processor. To fully utilize the accelerator, the conventional BSS
methods were implemented with CuPy 11.5.0, and the neural
methods were implemented with PyTorch 1.13.1.

C. Experimental results

The separation performance for each number of sources
K ∈ {2, 3, 4} was summarized in TABLE I. We first see that
the original neural FCA required 200 times of updates for con-
vergence. Besides, the neural FCA deteriorated by fixing the
latent features znt to the output of the inference model (“fix
z” in the table). This result indicates that the inference model
failed to precisely estimate the latent source features only from
the observed mixture. In contrast, our neural FastFCA, which
does not update the outputs of the inference model, outper-
formed the neural FCA in SDR and STOI and outperformed
that without updates of znt in all the metrics. In addition, our
method reduced the computational time to about 2 % of that for
the neural FCA (4.77 [s]). The proposed method also clearly
outperformed the conventional BSS methods of MNMF, IL-
RMA, and FastMNMF for all the conditions of K ∈ {2, 3, 4}.
We would also note that the neural FastFCA was trained suc-
cessfully by using multichannel mixture signals to have dif-
ferent numbers of sources. This result shows the promising
possibility of our method to train a neural separation model in
an unsupervised manner by specifying the maximum number
of sources in the training mixtures.

V. CONCLUSION

This paper presented a neural BSS method called neural
FastFCA based on the integration of the neural source model,
JD spatial model, and ISS-based inference model. Specifically,
we extended the original neural FCA to have a JD full-rank
spatial model to efficiently reduce the computational cost. Our
neural FastFCA also introduces an ISS-based inference model
to improve the separation performance. The experimental re-
sults with mixture signals having two to four sources showed
that our neural FastFCA outperformed existing BSS methods.
In addition, the elapsed time for performing our method was
reduced to 2 % of that for the original neural FCA. Our fu-
ture work includes further extending our method with various
BSS techniques. For example, the joint dereverberation and
separation of moving sources is an important feature to com-
putationally understand mixture signals recorded in indoor en-
vironments. We will also investigate separating various kinds
of sound sources in addition to speech signals.
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