
Canonical Voice Conversion and Dual-Channel
Processing For Improved Voice Privacy of Speech

Recognition Data
Dushyant Sharma1, Francesco Nespoli1,2, Rong Gong3, and Patrick A. Naylor2

1Nuance Communications Inc., USA
2Imperial College London, UK

3Nuance Communications GmbH, Austria
Email: dushyant.sharma@nuance.com

Abstract—This paper addresses the need for enhancing the
privacy of test data in a deployed automatic speech recognition
(ASR) system so that what was said cannot be linked to who said
it, a process we describe as acoustic de-identification. Existing
techniques can be used to modify voice characteristics to make
the speaker identity unrecognizable, but normally at the expense
of ASR performance. We present a novel approach for improving
ASR performance on acoustically de-identified voice data. Our
method exploits a dual-channel input to a self-attention channel
combinator front-end to an end-to-end ASR system, and data
augmentation, where some amount of original speech data is
used in model training. The voice data is de-identified by a
zero-shot voice style transfer system to the voice of a registered,
canonical speaker. We show that the proposed approach achieves
a significant improvement in privacy as demonstrated by a 10x
increase in the EER of an automatic speaker verification system,
while also improving the ASR accuracy as demonstrated by a
18.3% reduction in WER relative to a single channel model
baseline model when tested on acoustically de-identified speech.

I. INTRODUCTION

The ubiquitous deployment of automatic speech recogni-
tion (ASR) based smart voice systems demands a greater effort
in the protection of Personal Identifiable Information (PII).
The need for such privacy protection is fuelled not only by
recent privacy legislation, such as the general data protection
regulation (GDPR) [1], which is an EU law that regulates
data privacy and protection in the EU and EEA, but also by
an increasing user-awareness of privacy issues. The GDPR
defines personal data as any information that is related to an
identified or identifiable natural person (also known as the data
subject) [1] and outlines two levels of data de-identification:
(i) anonymization, where the data is processed in such as
way that the data subject is no longer identifiable or (ii)
pseudonymization, where the data subject can be identified
only through the use of additional information. An example
of pseudonymization is the use of PI masking and encryption
where the original data is only retrievable through the use of
additional information in the form of the correct decryption
key. Two elements in speech that could identify the talker
are: (a) by reference to an identifier such as a name, identi-
fication number, location data or other personal information

including for example financial data, health related data, and
culturally or ethnically specific information; (b) the sound of
the speaker’s voice as determined by factors including pitch
and pitch variation, vocal timbre, tempo and other accent-
related characteristics [2]. We note that a person’s voice is
by definition PII and therefore an important component of a
speech anonymization or pseudonymization system.

As an example, it is clear that many individuals, particularly
if well-known public figures, could be identified by the sound
of their voice. Therefore, in order to acoustically de-identify1 a
speech signal, such as might be used for ASR-based systems, it
is necessary to remove from all such utterances any identifiable
acoustic information so that the speaker’s voice cannot be
recognized, such as by changing vocal characteristics. Whereas
such algorithms serve to improve the speaker’s privacy, they
have the tendency to introduce characteristics that may degrade
ASR accuracy as measured, for example, in terms of the Word
Error Rate (WER) [3]. Accordingly, our motivation is to find
a way to preserve, or even enhance, WER while at the same
time using acoustically de-identified speech data as input to a
deployed ASR system. We note that typically, the data that is
used to train an ASR system is stored and processed in a way
that enhances privacy, using for example, pseudonymization
techniques such as tokenisation and encryption. In this paper,
we concentrate on the privacy enhancement of test data that
is provided to an ASR system at run-time.

Recently, a number of approaches for acoustic or voice-
based privacy processing have been proposed, including an
IEEE challenge for improving Voice Privacy [4]. In the chal-
lenge, a high performance baseline acoustic de-identification
system is provided that has four main components: an F0
estimator, an ASR based acoustic model, an x-vector based
speaker embedding system [5] and a speech synthesizer.
After extracting the F0 contour, the phonetic posteriorgram
(PPG) and the x-vector from the original utterance, a new
de-identified x-vector is sampled from a pool of held-out

1Note that we are not addressing the content of the audio, only the acoustic
aspects.
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speakers and input to the synthesizer which, in combination
with the original F0 and the PPGs, outputs the de-identified
utterance. The underlying assumption of this system is that
speaker information primarily resides in the x-vector. However,
it was demonstrated that both the F0 and the PPGs features
also contain speaker information [6], [7]. The de-identification
capabilities of the systems are tested in terms of equal error
rate (EER) of an automatic speaker verification (ASV) system
that is based on a x-vextor extractor coupled with a probabilis-
tic linear discriminant analysis (PLDA) [8] classifier. Finally,
the WER of an ASR model is used as proxy for the quality of
the synthesised speech with both the ASV and ASR systems
re-trained only on de-identified data.

This paradigm however is not ideal for two main reasons.
First, in a more realistic context researchers or developers in
an organization typically have access to purchased or publicly
available data which comes with consent to use that data as-
is and therefore only a subset of the training data typically
needs to be acoustically de-identified. Moreover, this data is
typically secured via pseudonymizion techniques as previously
mentioned, and such processing is more feasible for training
data due to lower constraints on computational complexity or
processing delay. Second, it is not guaranteed that training the
ASR model only on acoustically de-identified data leads to the
lowest WER on the acoustically de-identified test subsets. We
therefore propose a novel acoustic de-identification pipeline
based on zero-shot Voice Style Transfer (VST) to the voice
of a registered, single canonical speaker’s voice, in combi-
nation with a multi-channel ASR front-end and training data
augmentation based on mixing original and acoustically de-
identified data. We show that our approach achieves significant
voice privacy of test data and also outperforms baseline ASR
systems in terms of WER.

The remainder of the paper is organized as follows. In the
following section we describe our proposed method for voice
privacy and 2 channel ASR. In Section III we present experi-
ments conducted, including the ASV system, the training and
test data as well as evaluation metrics, followed by results in
Section IV and conclusions in Section V.

II. METHODS

In this section we outline the canonical voice conversion
based acoustic de-identification algorithm and then describe
the two-channel, Self Attention Channel Combinator (SACC)
based ASR system followed by the data augmentation tech-
nique based on mixing original and de-identification data.

A. Canonical Voice Conversion based Acoustic De-
Identification

We propose to use the voice of a registered speaker2 as
the target for a voice conversion (VC) system as a means
for achieving de-identification of the original speaker’s voice.
In previous approaches, such as those published in the Voice
Privacy Challenge [4], the target speaker embedding is chosen

2We assume that we have the registered speaker(s) consent for the use of
their voice in this manner.

in a way that improves privacy, by clustering all known speaker
embeddings in the training data and finding an embedding that
is maximally separated from known centroids. This approach
however does not guarantee that the new speaker’s voice will
be (a) well synthesized nor (b) that they will result in a voice
that is indistinguishable from another in the training set (there
is a chance that the new voice may sound like someone in
the training or test data). In our approach, we always use the
speaker embedding of a known and registered speaker as the
target for voice conversion. This allows us to be confident
that the target voice is one that is registered for us to use and
since only one voice is used for all the data, this can lead to a
better anonymization. Also, in a system where only one target
speaker is needed, it is possible to fine tune or retrain a VC
system to synthesize to the target speaker’s voice (since this
is a many to one transformation compared to a many to many
transformation). In our experiments described in the following,
we use the Coqui [9] toolkit and the zero-shot voice conversion
from the YourTTS [10] model. The YourTTS system builds
upon the VITS [11] model with several novel modifications
for zero-shot multi-speaker and multilingual training [10].

B. SACC based ASR

The Self Attention Channel Combinator (SACC) front-end
was first introduced in [12] as a novel front-end to an End-
To-End (E2E) ASR system that leverages self-attention to
optimally combine multi-channel audio signals. In [13] we
showed how the SACC can be combined with an additional
front-end comprising channel shortening with the Weighted
Prediction Error (WPE) method followed by a fixed MVDR
beamformer. In this work, we exploit the SACC front-end as
a means to effectively combine original and acoustically de-
identified speech signals.

The SACC front-end [12] operates in the power domain via
Short-Time Fourier Transform (STFT) of the input signals,
in this case from the two channels. The output is a single-
channel magnitude spectogram, Y ∈ R𝑇×𝐹 obtained by taking
an element-wise product and sum over the channel dimension
of the weights matrix W ∈ R𝑇×2×1 and the normalized loga-
rithmic power of multi-channel input X ∈ R𝑇×2×𝐹 , Y = WXT,
where 𝑇 and 𝐹 are the numbers of time frames and frequency
bins, respectively. A scaled dot-product self-attention mecha-
nism is utilized to compute the weights W [12]. The mixed
single channel output signal is then processed through a 64
dimension Mel-Filterbank.

Following the SACC front-end, we use an attention encoder-
decoder based E2E ASR system with a ContextNet [14]
based encoder and a single layer LSTM decoder [12]. For
all experiments reported here, the ASR system is trained for
110 epochs and checkpoint averaging is performed over three
checkpoints. An early stopping patience of 20 epochs is used
and Spectral-Augmentation [15] is also enabled on the input
feature stream.

In order to train a two-channel SACC based ASR system,
we consider different options for processing the original and
acoustically de-identified signals. In all cases, we assign chan-
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nel 1 to the original speech and channel 2 to the de-identified
speech. The following table summarizes the different options
for processing the original signals when the original signal
is to be de-identified (in the following, the original speech is
always replaced by either a noise or a zeros signal).

Channel 1 Channel 2
C-Noise -3 dBFS white noise VST(orig.)
M-Noise white noise + RMS

matched to Ch.2
VST(orig.)

Zeros zeros VST(orig.)
Zeros+M-Sig zeros VST(orig.) + RMS

matched to orig.

When testing the SACC based ASR systems, the original
test condition is based on a two-channel signal (where channel
1 is the original speech and channel 2 is the acoustically de-
identified speech). For the VST condition, the channel 1 signal
is zeroed out.

C. Data Augmentation

We propose to mix different proportions of permitted origi-
nal training data with acoustically de-identified data as a type
of data augmentation strategy. This approach is motivated by
lower constraints on computational complexity and/or process-
ing delay when securing training data and also due to the use
of data that may not be subject to stringent privacy concerns,
such as that which is obtained by a deliberate collection
with appropriate consent or public data. We show that such
processing results in better performing ASR models (single
and two channel).

III. EXPERIMENTS

In this section we describe the data and metrics used for
training and testing the ASR systems. Also, for the purpose of
evaluating the impact of the acoustic de-identification scheme
on voice privacy, we use a speaker verification system, similar
to the Voice Privacy Challenge [4].

A. Data

The training and test data are based on the Libri-Speech
[16] corpus. For training, we use a combination of the clean-
100 and clean-360 data, amounting to 460 hours. of data. The
testing uses the Libri test-clean and test-other data-sets.

B. Voice Conversion

In this work, we primarily work with a canonical speaker
as the target of the VC system. However, we also evaluated a
setup where a set of 4 target speakers are available. For these
experiments (labeled 4S in the results section), 2 male and 2
female speakers were selected from the VCTK data-set [17]
and their speaker embeddings extracted using the Coqui toolkit
[9]. For each utterance in training and test data, the target
speaker was chosen as the one whose speaker embedding was
most distant, as measured by the cosine distance between pairs
of speaker embeddings.

C. Automatic Speaker Verification

In this work, we use the automatic speaker verification task
as a means of assessing the improvement in voice security
achieved on the test data. The evaluation is performed using
two systems, the first of which is the taken from the Voice
Privacy Challenge [3] and is based on x-vector speaker embed-
dings followed by a PLDA classifier [18], that outputs a log-
likelihood ratio (LLR) score for a pair of enrollment and trial
x-vectors, which is compared to a threshold to make a speaker
verification decision. The x-vector embeddings are based on
a DNN using 24 dimension Mel-filter-bank features extracted
with a frame-length of 25 ms and mean-normalized over a
sliding window of up to 3 s [19]. The DNN is trained to clas-
sify between speakers in the training data and an embedding
of dimension 512 is extracted for each utterance. We also use a
second speaker verification system from speechbrain [20] that
is built on an ECAPA-TDNN [21] based speaker embedding
system. We re-trained this model using the single channel
version of the 50% mixed data-set (where half of the training
data was acoustically de-identified using a single speaker’s
voice) for 100 epochs with a batch size of 128, 80 dimension
Mel-Filter-bank coefficients and a speaker embedding of size
192 (as in the pre-trained model from speechbrain). Additional
data augmentation was also performed as per the original
scripts, including speed augmentation, spectral augmentation,
additive noise and reverberation [20]. The Additive Angular
Margin (AAM) [22] loss was used with an Adam optimizer
(learning rate initialized with a value of 0.001) and learning
rate decay using cyclical learning rate [23]. This retraining
represents the use case where an attacker has knowledge of
the canonical speaker and voice conversion system used in
our privacy enhancement system and thus allows for a more
stringent evaluation of the voice privacy aspect of this work.

D. Metrics

We use the Word Error Rate (WER) metric for assessing
ASR performance. In addition, the Equal Error Rate (EER)
and Minimum Detection Cost Function (minDCF) metrics
are used for assessing the degradation that the VST process
causes in speaker recognition systems as a means for voice
security improvement. An ASV system has to typically trade-
off between two types of errors: a false acceptance or false
alarm (FA), when the system incorrectly accepts an impostor
and a false rejection (FR), where the system incorrectly rejects
a speaker as an imposter. These can be defined as follows.

FAR = number of FA ÷ number of imposter trials (1)

FRR = number of FR ÷ number of user trials (2)

The EER metric represents the operating point (\𝐸𝐸𝑅)
at which the false reject rate (𝑃𝐹𝑅𝑅 (\)) and false alarm
rate (𝑃𝐹𝐴𝑅 (\)) are equal, i.e. 𝐸𝐸𝑅 = 𝑃𝐹𝐴𝑅 (\𝐸𝐸𝑅) =

𝑃𝐹𝑅𝑅 (\𝐸𝐸𝑅) [3]. Following this definition, an EER of 50%
corresponds to a perfect de-identification.

Another metric that is often used in evaluating ASV systems
is proposed in the NIST Speaker Recognition Evaluations
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(NIST-SRE) [24] as a weighted sum of false reject and
false-alarm error probabilities for some decision threshold \,
denoted as the Detection Cost Function (DCF) and defined
as [25]

𝐷𝐶𝐹 =

{
C(FR) × P(user) × FRR+
C(FA) × 1-P(user) × FAR,

(3)

where P(user) is the prior probability that a user will use the
system (set to 10−1), 1 − P(user) is the prior probability that
an impostor will use the system, C(FR) is the cost of a false
rejection, and C(FA) is the cost of a false acceptance [24], [25].
For the ECAPA-TDNN [21] based ASV system, we evaluate
the performance using the accuracy metric directly.

Table I: Different ways of generating the two-channel signals
for SACC based ASR trained with 5% de-id mixed with
original speech. The Original test set comprises two-channel
signals (ch.1 original speech and ch2. VST speech). The VST
test set has a zeros ch.1 signal and the evaluation metric is
WER (%).

Test-Clean
Model Proc. Original VST Avg.
SD-5 C-Noise 5.7 8.4 7.1
SD-5 M-Noise 5.7 7.8 6.8
SD-5 Zeros 5.6 8.0 6.8
SD-5 Zeros+M-Sig. 5.6 7.7 6.7

Table II: WER (%) results for baseline systems without data
mixing augmentation (i.e. 0 or 100% de-id). 1S and 4S refer
to 1 or 4 target speakers for vst processing, respectively.

Test-Clean Test-Other
Model Ch VST Orig. Avg. VST Orig. Avg.
Orig. 1 8.4 4.5 6.5 28.3 14.5 21.4

VST-1S 1 7.1 8.8 8.0 24.1 30.9 27.5
SACC-1S 2 7.9 5.2 6.6 26.3 17.5 21.9
VST-4S 1 7.5 10.3 8.9 25.0 26.7 25.9

SACC-4S 2 9.7 5.3 7.5 32.3 18.2 25.3

IV. RESULTS

As described in Section II, we consider different options
for assembling the two-channel signals to use with the SACC
based ASR front-end. The results for these are shown in
Table I, where it can be seen that the best ASR results (lowest
WER) are obtained with the Zeros+M-Sig. In this experiment,
the two-channel SACC front-end is used and 5% of the training
data is acoustically de-identified using the canonical voice
conversion.

In Table II we present the results for the single channel
model trained on original speech (i.e. no de-id) as well as with
100% de-identification processing with 1 or 4 target speakers
(denoted VST-1S and VST-4S respectively). Also, presented
are WER results for the stereo SACC systems (with channel
1 set to zeros). It can be seen that for the de-identified test set
(VST column), the single channel VST-1S model performs the
best, but performs poorly on the original speech. The SACC
based models outperform the single channel models on the

mean WER scores (offering a balance in performance on the
original and de-id test sets). In Table III we show the results for
the 1S condition and with a mix of de-id and original speech
(we explore 5%, 25%, 50% , 75% and 95% mix of de-id data
during training). We can now observe a large improvement
in performance for both single and two-channel systems on
all test sets and processing conditions. The best result for
de-identified test data (VST) is obtained with a 50% mix
of de-id and original data with the two-channel SACC ASR
system, outperforming the single channel VST-1S system by
3.8% WERR. The improvement relative to the model trained
with original speech is an 18.3% relative reduction in WER.
This shows that using such data augmentation and a two-
channel SACC based system can achieve good WER scores
and outperform the matched condition system.

Table III: WER results with varying amounts of data mixing
augmentation and acoustic de-identification with a canonical
target speaker (i.e. 1S). The test data here is fully acoustically
de-identified.

Ch. Mix(%) Test-Clean Test-Other Avg. WERR-Orig.
1 5 7.5 26.0 16.8 8.7
2 5 7.7 25.8 16.8 8.7
1 25 7.2 24.2 15.7 14.4
2 25 8.6 26.9 17.8 3.3
1 50 7.4 25.2 16.3 11.2
2 50 6.9 23.1 15.0 18.3
1 75 7.3 24.2 15.8 14.2
2 75 7.0 23.5 15.3 16.9
1 95 7.1 23.8 15.5 15.8
2 95 7.1 23.3 15.2 17.2

The next consideration is the evaluation of the voice privacy
aspect of the proposed canonical voice transformation process.
For this purpose, we evaluate the performance of two ASV
systems and observe the increase in the EER when switching
from original speech to the de-id speech signals. In Table IV
we present the accuracy and the threshold score when the
re-trained ASV system (ECAPA-TDNN labeled columns) is
evaluated with the original utterances, for which the system
has a high accuracy of 95.0% and this drops significantly when
the acoustic de-id processing is performed (with accuracy
dropping to 26.4%). A similar pattern is observed for the
threshold score. In Table IV we present the EER and min.
DCF scores for the x-vector PLDA based ASV system from
the Voice Privacy Challenge [3] (ASV-CPC labeled columns),
where we can see that the EER increases nearly 10-fold,
from 3.8 for original speech to 39.4 for the acoustically de-id
speech. A similar pattern is observed for the min. DCF metric.
This confirms that the proposed canonical voice conversion
processing significantly improves the voice privacy of the data.

V. CONCLUSIONS

In this paper, we presented a novel scheme for improving the
privacy of a voice signal and its use with a two-channel SACC
front-end based E2E ASR system. We show that the canonical
voice conversion process achieves significant improvement in
voice privacy as demonstrated by a 10-fold increase in the
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Table IV: Speaker verification results using the fine-tuned
ECAPA-TDNN speaker embedding model, measured using
mean accuracy and threshold score, followed by results using
the baseline system from the voice security challenge (asv-
vpc), using the EER and min. DCF metrics.

ECAPA-TDNN ASV-VPC
Acc. Score EER min. DCF

Original 95.0 0.61 3.8 0.11
VST 26.4 0.09 39.4 0.99
Δ (%) 72.2 85.2 90.4 88.9

EER of a ASV system when operated with the acoustically
de-identified speech signals. By processing the acoustically de-
identified signals through level matching prior to assembling
with either a zeros signal or the original signal, input to a
SACC front-end allows balancing the trade-off in performance
on a test set that is optionally de-identified. Furthermore, if
data augmentation via mixing of acoustically de-identified
and original speech is performed during training, a large
improvement in ASR performing is achieved. We showed
that a mixing ratio of 50% acoustically de-identified and
original speech allows a two-channel SACC based ASR model
to outperform the matched condition model on acoustically
de-identified speech (i.e. a model that is trained and tested
with acoustically de-identified speech) by 3.5% WER relative
(averaged over the test-clean and test-other, acoustically de-
identified data-sets). This represents an 18.3% WER reduction
relative to the single channel model trained with original
speech.

In future work, we would explore the adaptation of the zero-
shot VC system using the canonical speaker’s voice, with the
expectation that will would result in higher quality speech
signals and thus lead to an additional improvement in ASR
performance.
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J.-F. Bonastre, M. Todisco, and M. Maouche, “The voiceprivacy 2020
challenge: Results and findings,” Computer Speech Language, vol. 74,
pp. 101362, 2022.

[4] N. Tomashenko, X. Wang, X. Miao, H. Nourtel, P. Champion,
M. Todisco, E. Vincent, N. Evans, J. Yamagishi, and J.-F. Bonastre,
“The voiceprivacy 2022 challenge evaluation plan,” 2022.

[5] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 5329–5333.

[6] E. Gaznepoglu and N. Peters, “Exploring the importance of f0 trajec-
tories for speaker anonymization using x-vectors and neural waveform
models,” 2021.

[7] M. Tran and M. Soleymani, “A speech representation anonymization
framework via selective noise perturbation,” 2022.

[8] S. Ioffe, “Probabilistic linear discriminant analysis,” in Computer
Vision–ECCV 2006: 9th European Conference on Computer Vision,
Graz, Austria, May 7-13, 2006, Proceedings, Part IV 9. Springer Berlin
Heidelberg, 2006, pp. 531–542.

[9] “Coqui tts,” https://github.com/coqui-ai/TTS, Accessed: 2023-01-25.
[10] E. Casanova, J. Weber, C. D. Shulby, A. C. Junior, E. Gölge, and

M. A. Ponti, “Yourtts: Towards zero-shot multi-speaker tts and zero-shot
voice conversion for everyone,” in International Conference on Machine
Learning. PMLR, 2022, pp. 2709–2720.

[11] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech,” in International
Conference on Machine Learning. PMLR, 2021, pp. 5530–5540.

[12] R. Gong, C. Quillen, D. Sharma, A. Goderre, J. Lainez, and L. Mi-
lanovic, “Self-attention channel combinator frontend for end-to-end
multichannel far-field speech recognition,” in Proc. of Interspeech, 2021.

[13] D. Sharma, R. Gong, J. Fosburgh, S. Y. Kruchinin, P. A. Naylor, and
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