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Abstract—We present a novel signal processing-based ap-
proach for estimating room impulse responses for augmentation
of ASR training data that is best suited to the reverberation
characteristics in a particular acoustic space. Our approach
estimates an impulse response of a room by using a supervised
adaptive system identification algorithm to extract the relative
transfer function between a speech source played through a
loudspeaker and recorded by a microphone. These impulse
responses can then be applied to clean speech files to create an
augmented training set for an ASR system. Given the availability
of a small amount of this type of playback audio for a room, we
show that an ASR model trained with our data augmentation
approach can provide a 19% relative reduction in word error
rate compared to a system using random augmentation.

Index Terms—ASR, AEC, Room Adaptation, IPNLMS

I. INTRODUCTION

The increased deployment of Automatic Speech Recogni-
tion (ASR)-based applications has been facilitated by a number
of advances in front-end signal processing, data augmentation,
and deep learning architectures. Of particular interest is the
use case of distant ASR in an enclosed space (i.e., a room),
where non-trivial amounts of reverberation are introduced into
the recorded signal. Reverberation has been shown to lead to
significant degradation on ASR systems that take no measures
to compensate for it [1].

One approach for solving this problem involves the use of
microphone arrays and beamforming [2], [3], [4]. However,
when only a single microphone channel is available, the typical
ASR training approach is to rely on matched condition training
data collected from rooms with similar reverberation. In a
situation where we want to deploy an ASR system in a
distant speaking situation with very limited in-domain data,
however, this becomes more challenging. Instead, it can be
highly beneficial to turn to data augmentation to make up
for a lack of in-domain data. One approach for doing this
is to simulate far-field data by applying reverberation and
noise to clean speech. In [5], the authors evaluate the effect
of this method with both real and simulated room impulse
responses (RIRs). Their results show significant gains in ASR
performance when using this data augmentation method over
a baseline that is trained using clean speech. They additionally
assert that, while real RIRs lead to better gains than simulated

RIRs in the case where only reverberation is applied, this gap
vanishes when also adding noise to the training data.

While this approach to data augmentation provides signif-
icant gains, it is possible that additional improvements can
be made by refining the RIR set to target a specific room.
In [6], the authors achieve this by using a non-intrusive
signal analysis (NISA) [7] approach to estimate values for
speech clarity (C50), room volume, and average reflection
coefficient from playback speech, obtained by recording the
output from artificial mouth loudspeakers in multiple positions
in a single room. These parameters are then used to select
a set of simulated impulse responses that match the target
characteristics of the room. The authors show a 9.6% relative
improvement in WER compared to using a random selection
of RIRs.

Our approach aims to achieve better room adaptation by
estimating RIRs from the playback speech directly. Assuming
that playback speech for a room is available, we propose the
use of an adaptive system identification algorithm, such as
used for acoustic echo cancellation (AEC), for room adapta-
tion. Using the original speech as the reference signal and the
playback speech as the distant signal, we employ the improved
proportionate least mean square (IPNLMS) [8] algorithm to
estimate the transfer function between the speaker and the
microphone, which is representative of the impulse response
in the playback room between those positions. These RIRs are
then used to augment training data for an ASR system.

The remainder of the paper is laid out as follows: Section
II describes the data augmentation methods used, Section
III presents the experiments performed, Section IV presents
the results of our experiments, and Section V presents our
conclusions.

II. ROOM ADAPTATION

In this section, we describe the room adaptation techniques
applied in this paper. In all cases, we adopt a two-step process,
in which we first obtain a set of RIRs that closely match the
target room’s reverberation environment, then apply the RIRs
to clean training data in the second step. An ASR system is
then trained on the augmented data.
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Fig. 1: Example room setup (left) and corresponding block dia-
gram of the IPNLMS configuration for RIR estimation (right).
The RIR between a source signal x(n) and a microphone y(n)
is denoted as h(n). The ambient noise component is handled
by data augmentation and is not estimated our approach.

A. Baselines

In this paper, we consider two baseline data augmenta-
tion (DA) approaches, as described in more detail in the
following.

1) Random DA: In the random data augmentation baseline,
a large set of RIRs was simulated using the Image method [9]
targeting a T60 range of [200 to 700] ms, from which 300
RIRs were selected randomly and applied to the training data.
Additional augmentations were applied as described in Section
III.A, with a range of [5 to 30] dB for the SNR of the noise.

2) NISA+ DA: For the NISA-based data selection base-
lines, RIR selection was performed according to acoustic
parameters estimated using NISA+ [6]. For NISA+ I, C50 was
used for the selection criteria as it was previously shown to
correlate well with ASR performance [7]. RIRs were chosen
from those with a C50 range of [5 to 11] dB. For the NISA+ II
baseline, the estimated room volume and reflection coefficient
parameters were added to the selection criterion. RIRs were
chosen from those with a C50 range of [5.4 to 10.5] dB, a
room volume range of [29.4 to 44.4] m3, and a reflection
coefficient range of [0.68 to 1.1]. For more information,
see [6]. Additional augmentations were applied as described
in Section III.A, with the SNR range being [10 to 24] dB for
NISA+ I and [11 to 25] dB for NISA+ II.

B. IPNLMS RIR Estimation

The problem of estimating RIRs given some clean and
playback recorded speech is akin to that of acoustic echo
cancellation (AEC). In AEC, the acoustic system identification
is performed by a supervised adaptive filtering algorithm. In
this paper, we use the improved proportionate normalized
least mean square (IPNLMS) algorithm described in [8], as
it can be advantageously adjusted to take into account any
sparseness in the RIRs by interpolating between the update
values returned by the normalized least mean square (NLMS)
algorithm detailed in [10] and the proportionate normalized
least mean square (PNLMS) algorithm presented in [11].

In the formulation of the IPNLMS algorithm [8], the RIR is
estimated as a finite impulse response filter, denoted as ĥ(n)

and calculated in the time domain as follows.

ĥ(n) = ĥ(n− 1) +
µK(n− 1)x(n)e(n)

xT(n)K(n− 1)x(n) + δIPNLMS
, (1)

where µ is the overall step-size parameter, and the error signal,
e(n), is defined as follows

e(n) = y(n)− ĥT(n− 1)x(n), (2)

and

K(n− 1) = diag{k0(n− 1,..., kL−1(n− 1)}. (3)

The reference speech signal is denoted as x(n), y(n) is
the playback signal recorded at the microphone, kl(n) is a
parameter that controls the step-size of the filter tap at position
l, and δIPNLMS is the regularization parameter for the algorithm,
defined as

δIPNLMS =
1− α

2L
δNLMS, (4)

where L is the length of the filter and α is the control
value in the range [-1 to 1] that balances between NLMS-like
performance (α = −1) and PNLMS-like performance (α = 1).
For a complete derivation of the IPNLMS algorithm, see [8].

To estimate impulse responses using the IPNLMS algo-
rithm, the original recorded speech is passed in as the reference
signal, and the microphone signal is passed in as the distant
signal. The IPNLMS algorithm iteratively estimates the filter
that, when applied to the reference signal, produces the distant
signal. A depiction of this setup for RIR estimation is shown
in Fig. 1.

Before running the IPNLMS algorithm, the signals were
band-pass filtered to 200 Hz and 7900 Hz. File pairs were
then normalized to equal levels and aligned to remove the
delay introduced in the playback process. An artificial delay of
30ms was then reintroduced to the microphone signal to ensure
it was delayed compared to the reference to ensure causality
of the estimated RIRs. Finally, an energy-based voice activity
detector was run on the reference file to extract the speech
regions. The IPNLMS algorithm was run only on speech
regions. Additional augmentations were applied as described
in Section III.A, with a range of [10 to 24] dB for the SNR
of the noise.

III. EXPERIMENTS

In this section, we present the training, adaptation, and test
data, as well as the experiments conducted to validate the
IPNLMS based approach and measure its performance against
baseline approaches using an end-2-end (E2E) ASR system.

A. Training Data

The training data used in this work is taken from the
LibriSpeech (LS) [12] corpus and the Mozilla Common Voice1

(MCV) corpus. We used utterances from the 460 hours clean
subset of LS training data combined with utterances from the
MCV corpus, and retained a subset of 13.8 hours as a valida-
tion set. In addition to the application of simulated/estimated

1https://commonvoice.mozilla.org/en
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RIRs, the following augmentations were applied to the training
data: the speech level was augmented to be in the range from [-
1 to -15] dBFS, white noise was added to the speech at an SNR
of 45 dB to simulate microphone self-noise, and ambient noise
was added at an SNR range depending on the augmentation
set.

B. Test Data

The test data is based on playback of 500 utterances
from the LS test-clean subset [12] through artificial mouth
loudspeakers and recorded by a wall mounted 8 microphone
array. The playback and recording was performed from four
positions in a typical office room (3 m × 3.7 m), simulating
two pairs of conversation positions. The speaker pairs were
oriented toward each other as described in [13]. In this work,
we use the centre microphone signal for testing.

1) Adaptation Data: From the initial 500 utterances (as
described above) used for playback, 3 speakers comprising
25 utterances were excluded for use in IPNLMS data aug-
mentation. This is an additional two speakers comprising 12
utterances more than in [6], so the ASR decode has been
rerun for those models on the updated test-set. Across the
4 playback positions, this gives 100 clean-playback pairs for
use in IPNLMS data augmentation.

C. Automatic Speech Recognition

To evaluate the effectiveness of the proposed method of data
augmentation, we compare the results of ASR systems trained
with the different data augmentation methods on the playback
test-set.

We use the same E2E automatic speech recognition sys-
tem as described in [6]. The ASR system is an attention-
based encoder-decoder (AED) E2E ASR system using an
encoder based on ContextNet [14] and a single layer LSTM
decoder [15]. For all experiments reported here, the ASR
system is trained for 90 epochs, and checkpoint averaging is
performed over the last 3 checkpoints to create the final model.

D. IPNLMS RIR Estimation

For all experiments using IPNLMS, we used an α of 0.85
and a µ of 0.1. The algorithm was run for 500k iterations,
reducing µ by 5% every 10k iterations, and saving RIRs at
300k, 400k, and 500k iterations to achieve 3 RIRs per file
pair.

E. Validation of IPNLMS based approach on ACE

While the above experiments examine the effectiveness
of using the IPNLMS algorithm through the lens of ASR
performance, we performed an additional experiment using
the ACE Challenge corpus [16]. This corpus provides a set of
measured real RIRs, which we used to examine the accuracy of
the IPNLMS estimated RIRs. For this experiment, we pulled
the single channel RIRs at a distance of 2 meters from the
rooms Meeting Room 1&2 and Office 1&2, and the anechoic
speech files F5s3 and M6s3, which are from a female and
male speaker respectively. All files were re-sampled from

the original 48kHz to 16kHz. Each RIR was individually
applied to both speech files, and these artificially reverberated
utterances were used as the distant speech for IPNLMS while
the anechoic was used as the reference. All pre-processing and
settings were kept the same as described in Section II.B.1, and
the final RIR was taken after 500k iterations. The resulting
estimated RIR from both speakers were then averaged and
compared to the real target RIR. Fig. 2 plots the target and
estimated RIRs, and Fig. 3 shows the C50 and direct-to-
reverberant ratio (DRR) as measured directly and as estimated
by NISA+ after convolution with a speech file. As can be seen
from the plots, the estimated RIRs, while more sparse than the
targets, follow the overall shape of their targets well, and the
trends in reverberant characteristics are additionally very well
matched.

(a) Meeting Room 1

(b) Meeting Room 2

(c) Office 1

(d) Office 2

Fig. 2: Waveforms of the target real RIR and averaged
IPNLMS estimated RIRs for each of the validation rooms.
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(a) C50

(b) DRR

Fig. 3: Plots showing the C50 (upper) and DRR (lower) of
the target real RIR and averaged IPNLMS estimated RIRs
as measured directly and estimated by NISA across the four
validation rooms.

F. Metrics

As the goal of this paper is improved ASR performance,
we use word error rate as our primary evaluation metric. We
additionally look at the difference in distribution of C50 and
DRR between the different RIR augmentation sets as measured
directly from the RIRs.

IV. RESULTS

Table I shows the ASR results for the described data
augmentation (DA) techniques. As was shown in [6], all
methods of data augmentation lead to greatly improved ASR
performance, with a minimum WERR of 73.2% compared to
the clean model. Furthermore, the models adapted specifically
to a target environment show a minimum 11.2% WERR
over random augmentation. Finally, using IPNLMS for data

(a) C50

(b) DRR

Fig. 4: Comparisons of NISA+ estimated C50 (upper) and
DRR (lower) between ASR training datasets augmented with
the described RIR sets.

Model WER WERR WERR WERR
Clean Random NISA+ II

Clean 48.89 - - -
Random DA 13.08 73.2 - -
NISA+ I DA 11.61 76.3 11.2 -
NISA+ II DA 11.57 76.3 11.5 -
IPNLMS DA 10.61 78.3 18.9 8.3

TABLE I: WER results (%) of ASR models trained with
different RIR sets on LS playback test-set.

augmentation resulted in an 8.3% WERR over the best model
using the NISA+ data augmentation approach.

We have additionally compared the reverberant character-
istics of each RIR set. Fig. 4 shows box plots of the C50
and DRR of each RIR set. In the case of C50, the 3 targeted
sets have a tighter distribution than the random set, which is
reflected by the ASR performance being better suited towards
the playback set. However, the IPNLMS set shows a greater
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difference in median C50 than any of the other sets, and
additionally has far more outliers than the two pruned sets.
This difference in median is even more apparent in the DRR,
and the IPNLMS has a more spread out distribution than even
the random set. These results, combined with the results of
the ACE validation experiment, show that pruning based on
reverberant characteristics provides significant improvements
over not tuning at all, but suggest that estimating an RIR
directly can lead to better performance despite the reverberant
characteristics not being as statistically well matched.

A. Cross-Validation

To investigate the effectiveness of using IPNLMS data adap-
tation for unknown test configurations, we have additionally
performed a cross-validation experiment. In this experiment,
the RIR estimation process was the same, with an additional
RIR taken after 200k steps of the IPNLMS algorithm. Four
new ASR models were trained in the same manner as de-
scribed in Section III.A, holding out the RIRs from one
position for each model. Each model was then evaluated on
the playback test files only from the room it was not trained
on.

Playback Random NISA+ II IPNLMS IPNLMS Cross-
Position DA DA DA Validation

P1 14.64 10.03 11.26 14.38
P2 11.82 10.69 10.01 10.21
P3 13.14 11.41 10.88 11.41
P4 12.77 11.12 10.28 11.93

TABLE II: WER results (%) by playback position comparing
previously presented models against IPNLMS cross-validation,
in which the results for each position are taken from an
IPNLMS augmented model that has not seen that position.

Table II presents the WER results broken down over each
position. As can be seen from the IPNLMS cross-validation
results, in 2 positions the IPNLMS approach outperforms only
the random augmentation approach on the unseen position,
while in the other 2 positions there is only a slight degredation
in performance, with better results only coming from the full
IPNLMS approach.

V. CONCLUSIONS

We presented a method for targeted augmentation of training
data to allow an ASR system to adapt to the reverberant
characteristics of a specific room. Our approach uses the
IPNLMS algorithm to estimate RIRs for given playback lo-
cations in a room and uses these estimated RIRs to perform
acoustic augmentation of ASR training data. We show that
our proposed approach outperforms the baseline adaptation
techniques using non-intrusive signal analysis of the same
playback data by relative 8.3% WER. This result suggests
that tailoring ASR training data with playback-estimated RIRs
from a room can outperform adaptation that looks only at the
overall acoustic characteristics of the room, and that adaptive
filter based algorithms are good candidates for this approach.
We additionally show that using this method has mixed results

when testing on unseen playback locations, highlighting the
importance of having playback recordings representative of
expected test-time locations.

For future work, we may consider frequency domain imple-
mentations of the IPNLMS and similar algorithms, as those
allow for faster convergence and better robustness than time
domain methods. A noise estimation block could also be added
to both improve the accuracy of the ambient noise component
and potentially lead to better estimation of the RIR, as the
ambient noise would theoretically be removed from the error
signal. We may additionally investigate a mixture of targeted
adaptation techniques to make up for the varied performance
on unseen positions.
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