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Abstract—In this paper, we propose a privacy-preserving
method with a secret key for convolutional neural network
(CNN)-based speech classification tasks. Recently, many methods
related to privacy preservation have been developed in image
classification research fields. In contrast, in speech classification
research fields, little research has considered these risks. To
promote research on privacy preservation for speech classifi-
cation, we provide an encryption method with a secret key in
CNN-based speech classification systems. The encryption method
is based on a random matrix with an invertible inverse. The
encrypted speech data with a correct key can be accepted by
a model with an encrypted kernel generated using an inverse
matrix of a random matrix. Whereas the encrypted speech data
is strongly distorted, the classification tasks can be correctly
performed when a correct key is provided. Additionally, in this
paper, we evaluate the difficulty of reconstructing the original
information from the encrypted spectrograms and waveforms. In
our experiments, the proposed encryption methods are performed
in automatic speech recognition (ASR) and automatic speaker
verification (ASV) tasks. The results show that the encrypted
data can be used completely the same as the original data when
a correct secret key is provided in the transformer-based ASR and
x-vector-based ASV with self-supervised front-end systems. The
robustness of the encrypted data against reconstruction attacks
is also illustrated.

Index Terms—Privacy preservation, Audio encryption, Auto-
matic speech recognition, Automatic speaker verification

I. INTRODUCTION

In recent years, cloud services have been increasingly used
in many applications. Cloud services have the advantages of
reducing initial computer investment and maintenance costs,
and facilitating information sharing. However, since cloud
services are managed by external providers, various threats
such as data leakage due to malicious attacks from outside or
inside are a concern [1]. When using classification models on
a cloud service, it is necessary to provide a trained model and
query data to the cloud service. Therefore, when cloud services
are insecure, models and queries face threats. To prevent such
risks, it is important to preserve privacy before sending data
to insecure services.

Speech data usually includes personal information such as
age, gender, language, and speaking content. Therefore, the
issue of privacy also has been gradually gaining attention as

the latest topic in the research field of speech processing [2].
In the research field of image processing, many privacy-
preserving methods have been proposed for CNN-based sys-
tems [3], [4]. Some latest speech classification systems also
adopt a convolutional layer for accepting speech data. Thus,
the privacy-preserving methods for image classification can
be easily applied to such CNN-based speech classification
systems.

There are two patterns for inputting speech data into a
convolutional layer: using a two-dimensional representation
such as a spectrogram, and directly using a waveform. There-
fore, we propose privacy-preserving methods that use a secret
key to encrypt both spectrograms and waveforms and are
assumed to have a random matrix with an invertible inverse.
As examples of encryption methods with random matrices
with invertible inverses, we propose two methods: shuffling
and flipping. Speech data encrypted by either encryption
method is highly distorted compared with its original data.
Therefore, the classification task can only be performed cor-
rectly when a correct key is provided. In the experiments,
we performed the proposed privacy-preserving methods in
automatic speech recognition (ASR) and automatic speaker
verification (ASV). From the results, we confirmed that when
a correct secret key is used, the classification performances
are completely the same as those without encryption, and
when an incorrect key is used, the accuracies are significantly
decreased. Additionally, in this study, we evaluate the difficulty
of reconstructing the original information from the encrypted
spectrograms and waveforms. Regarding sound reconstruction
methods, phase reconstruction approaches and decryption at-
tacks can be considered to reconstruct the original waveforms
from spectrograms [5]. From these reconstruction experiments,
the proposed methods can be shown to have high-security
performance. To evaluate the difficulty of reconstructing the
original spectrograms from the encrypted spectrograms and
waveform, phase reconstruction and a decryption attack were
performed on encrypted speech data.

In the following, we outline the structure of the paper. In
Section II, we describe the privacy-preserving classification
scenario. In Section III, we describe the details of the proposed
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Fig. 1: Privacy-preserving scenario

method and the attack issue of the proposed method, and in
Section IV we show the results. In Section V, we conclude
the study and describe our future work.

II. PRIVACY-PRESERVING CLASSIFICATION SCENARIO

Generally, there are three types of privacy-preserving issue
for machine learning-based systems: (1) privacy of datasets,
(2) privacy of models, and (3) privacy of models’ outputs [6].
In this paper, we focus on speech classification considering
privacy preservation in terms of the privacy of datasets. The
privacy-preserving scenario is illustrated in Fig. 1. It is based
on privacy preservation in image classification [7]. From
Fig. 1, first, a model owner trains a classification model with
plain speech data, e.g., spectrograms and waveforms in a
secure environment. Then, the trained model is encrypted with
a secret key. Since the encryption is performed after training,
the secret key can be changed easily without retraining the
model. Next, the model owner provides the encrypted model
to an external provider, such as a cloud service, and shares
the secret key with an authorized user. When the authorized
user wants to use the encrypted classification system published
by the external provider, an encrypted query with the shared
secret key is sent. In this scenario, only an authorized user
who knows the correct key can use the encrypted model.
In comparison, an unauthorized user who does not know
the correct key cannot use the model correctly and cannot
reconstruct a speech utterance from the encrypted query. In
this framework, it is assumed that the environment of model
owners and authorized users is secure and that of external
providers is insecure. Since an external provider performs
classification by using the encrypted queries and models, the
privacy information in spectrograms is protected even if the
external provider is insecure.

III. PROPOSED METHODS

A. Query encryption

In this subsection, we describe a speech data encryp-
tion method that use a secret key. Basically, the procedure
is followed to [8]. For adapting to speech data such as
two-dimensional spectrograms, speech data is encrypted by
whichever encryption method can be obtained through the

(a) ASR system [9] (b) ASV system [10]

Fig. 2: Examples of models accepting encrypted speech data

following procedure. First, let speech data X be regarded as
a spectrogram; speech data X with a size of T ×F is divided
into blocks with a size of M×M each, where T is the size of
X in the time direction, F is the size of X in the frequency
direction and M is the block size. Next, b-th block Xb is
flattened into a one-dimensional vector with a size of M2.
Then, Xb is converted into X ′

b by an encryption method while
maintaining the dimension using a secret key. There are two
methods for converting Xb to X ′

b as follows;
1) Shuffling: A secret key Ks is an array of randomly

permuted indices whose size is M2, and its key space refers
to the number of possible keys, denoted as M2!. Xb is
transformed into X ′

b using Ks as follows:

X ′
b(i) = Xb(Ks(i)), (1)

where 1 ≤ i ≤ M2. Eq. (1) shuffles the positions of the
spectrogram values in Xb according to Ks. When the speech
data X is regarded as a waveform, Fb is set to one in the
procedure. In this case, the key space of Ks is M !, and
the positions of the values included in the waveform can be
shuffled by Eq. (1).

2) Flipping: A secret key Kf is a bit sequence, and zero
and one are generated with equal probability. The size of Kf is
M2 and its key space is 2M

2

. Xb is transformed to X ′
b using

Kf as follows:

X ′
b(i) =

{
−Xb(i) (Kf(i) = 1)

Xb(i) (Kf(i) = 0)
, (2)

where 1 ≤ i ≤ M2. Eq. (2) inverts the sign of the spectrogram
values in Xb according to Kf. When X is a waveform, the
key space of Kf is 2M and the transformation is performed
according to Eq. (2).

Finally, each encrypted blocks X ′
b is integrated to obtain the

encrypted spectrogram X ′ with a size of T × F .
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B. Models accepting encrypted queries

To accept the encrypted queries with a secret key, the
parameters of the trained classification model are transformed.
The proposed encryption methods assume a classification
model including a convolutional layer for accepting input data.
When the kernel size and stride size of the convolutional layer
are equal, it means that the input data is divided into patches
without overlap. Since each encrypted block X ′

b is treated
independently, in this paper, the patch size is equal to the
kernel and stride sizes. Let us denote the patch size of the
convolutional layer to be encrypted as P , the number of output
dimensions as d, and the block size as equal to the patch size;
then, the kernel of the patch embedding layer can be expressed
as E ∈ RP×P×d. To cancel out each encryption, the kernel
of the model is defined as follows:

1) Shuffling: Kernel E is permuted with a shared secret
key Ks so that it can correctly accept the encrypted data into
a classification model. The encrypted kernel E′ is defined
using the permutation matrix Es, which is defined with Ks, as
follows:

E′ = EsE. (3)

We can treat encrypted data X ′ without retraining by simply
attaching the encrypted kernel E′ to the first convolutional
layer.

2) Flipping: Inverting the sign of the weights contained
in kernel E with a shared secret key Kf is necessary to
correctly accept the encrypted data into the encrypted model.
The transformation from kernel E into encrypted kernel E′ is
shown as follows:

E′[i, j] =

{
−E[i, j] (kl = 1)

E[i, j] (kl = 0)
, (4)

where l = (i−1)P+j, 1 ≤ i, j ≤ P and kl is the l-th element
of Kf.

Figures 2(a) and 2(b) are examples of ASR and ASV models
that were converted to accept data encrypted by shuffling.
In this paper, we performed transformations on the first
convolutional layer of each model. In the case of flipping,
encrypted data X ′ can also be inputted without retraining by
attaching the encrypted kernel E′ in the same flow as in Fig. 2.

C. Attacks on encrypted data

To evaluate the security of encryption methods, it is nec-
essary to demonstrate the difficulty of recovering the original
data by performing decryption attacks. In the image processing
research field, decryption attacks are performed on encrypted
images to restore visual information on plain images [4]. In
the speech processing research field, decryption attacks are
performed on encrypted spectrograms or waveforms to restore
the original data.

In this paper, to evaluate the privacy-preserving perfor-
mance, we applied a phase reconstruction method and de-
cryption attacks. The phase reconstruction method developed
by Průša et al. [5], was adopted on the encrypted spectro-
grams to investigate whether the waveforms before encryption

TABLE I: WER(%) in the encryption scenario (M = 3) for
ASR on LibriSpeech [12] (test clean / test other subsets).

Plain Correct
key

Incorrect
key

No encryption (Plain) 4.4 / 10.5 - -
Shuffling 12.2 / 24.8 4.4 / 10.5 11.9 / 24.7
Flipping 97.8 / 98.4 4.4 / 10.5 97.8 / 98.1

TABLE II: EER(%) in the encryption scenario (M = 10) for
ASV on VoxCeleb1 test set [13].

Plain Correct
key

Incorrect
key

No encryption (Plain) 8.3 - -
Shuffling 41.3 8.3 37.6
Flipping 39.3 8.3 39.1

could be reconstructed. Since there are few attacks against
encrypted spectrograms, we adopted Alex et al.’s [11] method
of the decryption attack on encrypted images. The encrypted
spectrograms are attacked as encrypted images.

IV. EXPERIMENT

We evaluated the proposed privacy-preserving methods us-
ing ASR and ASV tasks.

A. Experimental conditions

For the ASR task, we trained a transformer model with the
LibriSpeech corpus [12] following the ESPnet2 recipe [14].
The transformer architecture and hyperparameters were the
same as in [9], except for the input feature and the stride size
of the first convolutional layer. The input feature was set to
80-dim log-mel filterbank frames. The stride size of the first
convolutional layer, which included the encrypted kernel E′,
was set to three in order to adopt the proposed method. The
block size M for the encryption was set to three to match
the kernel size of the first convolutional layer. Word error rate
(WER) was used as an evaluation metric.

For the ASV task, we adopted an x-vector-based ASV sys-
tem [15] with a self-supervised front-end model. A HuBERT
model [10] trained with the LibriSpeech corpus was used as
the self-supervised front-end model. The structure and hyper-
parameters of the HuBERT model were the same as those of
the HuBERT BASE [10], except that the stride size of the first
convolutional layer was changed to 10. The block size M for
the encryption was set to 10. The speech expression outputted
from the HuBERT model was inputted to the x-vector-based
embedding network. The x-vector-based embedding network
was trained with the VoxCeleb1 corpus [13], using the same
hyperparameters as in [16]. Equal error rate (EER) was used
as the evaluation metric.

We performed the proposed method in three scenarios:
“Correct key”, “Incorrect key”, and “Plain”. “Correct key”
means that both keys used for encrypting the model and the
queries were the same, “Incorrect key” means that both keys
were not matched, and “Plain” means that only the model was
encrypted, and the query was not encrypted.
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Fig. 3: Spectrograms encrypted with proposed method.

B. Experimental results

1) ASR task: Table I shows the results of the ASR ex-
periments using the no-encryption (plain) model and the
models encrypted by shuffling and flipping. The WERs of the
encrypted models in Correct key were completely the same
as those of the no-encryption model. This indicates that the
Correct key scenario was performed as we expected. In the
Incorrect key scenario, the WERs were higher than those of the
Correct key scenario. In particular, when flipping was applied
as the encryption method, the WERs increased significantly.
To analyze these results, the spectrograms encrypted by the
proposed method are shown in Fig. 3. Figure 3(a) shows the
original plain spectrogram, and Figs. 3(b) and 3(c) show the
spectrograms encrypted by shuffling and flipping, respectively,
under the condition M = 3. By comparing Figs. 3(a) and 3(b),
we can see that the positions of values in each block move in
accordance with the secret key, and the harmonic structure of
the spectrogram is distorted. By comparing Figs. 3(a) and 3(c),
we can confirm that the magnitude of each value in the
encrypted spectrogram changes randomly. The value in the
spectrogram greatly increases owing to the sign inversion,
especially in the silence intervals in Fig. 3(a), so the encrypted
spectrogram is markedly different from the original one. A
larger block size M results in a larger key space and better
privacy-preserving performance. On the other hand, it will
affect the accuracy of ASR in the Plain scenario, so there is a
trade-off relationship between accuracy and privacy-preserving
performance.

2) ASV task: Table II shows the results of the ASV
experiments using the no-encryption (plain) model and the
models encrypted by shuffling and flipping. Similarly to the
ASR results, the EERs of the Correct key were completely
the same as those of the no-encryption model. In the Incorrect
key scenario, the EERs were higher than those of the the
Correct key scenario. To analyze these results, the waveforms
encrypted by the proposed method are shown in Fig. 4. Fig-
ure 4(a) shows the original plain waveform, Figs. 4(b) and 4(c)
show the waveforms encrypted by shuffling and flipping,
respectively, under the condition M = 10. Figures 5(a)-5(c)
correspond to the spectrograms in Figs. 4(a)-4(c), respectively.
By comparing the original and encrypted waveforms, we can
see that there are changes in the outline, but they are minor.
By contrast, from Figs. 5(b) and 5(c), it can be seen that
frequency the response of the original waveform has been
significantly changed by the encryption. These characteristics
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Fig. 4: Waveforms encrypted by proposed method.
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Fig. 5: Spectrograms corresponding to Fig. 4.

led to performance degradation without the correct key.

C. Evaluation of privacy-preserving performance

To evaluate the security of encryption methods, phase
reconstruction was performed using Průša et al.’s method.
Figure 6 shows the results of the phase reconstruction of the
spectrogram encrypted by shuffling. We first applied shuffling
to the spectrogram of the original speech (Fig. 6(a)) under
M = 3. Then, we reconstructed the speech by applying phase
reconstruction to the encrypted spectrogram (Fig. 6(b)). The
spectrogram of the reconstructed speech is shown in Fig. 6(c).
Figures 6(a) and 6(c) show that the structure of the spectro-
gram of the original speech and that of the speech obtained
by phase reconstruction were different. The original speech
and the speech obtained by phase reconstruction were also
different. Figure 7 shows the results of the phase reconstruc-
tion of the spectrogram encrypted by flipping. Spectrograms
in Fig. 7 were obtained by the same procedure as those for
shuffling. Figures 7(a) and 7(c) show that the overall structure
and amplitude values of the two spectrograms are significantly
different. The original speech was hardly audible from the
speech obtained by phase reconstruction. From the results
in Figs. 6 and 7, we found that it is difficult to reconstruct
the original speech from the spectrogram encrypted by the
proposed methods.

Then, a decryption attack was performed on the encrypted
spectrograms using Alex et al.’s method. The block size must
be known when the attacker decrypts the encrypted data.
Therefore, in the experiments, we assumed that the attacker
knows the block size. Generally, spectrograms can be treated
as grayscale images, but since Alex et al.’ s method only
supports 8-bit RGB images, we scale the spectrogram so that
the maximum value is 255 and the minimum value is 0.
Figure 8 shows the result of attacking a spectrogram encrypted
by shuffling under the condition M = 3, and Fig. 9 shows the
result of attacking a spectrogram encrypted by flipping under
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Fig. 6: Examples of phase reconstruction of the spectrogram
encrypted by shuffling (M = 3)
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Fig. 7: Examples of phase reconstruction of the spectrogram
encrypted by flipping (M = 3)

the condition M = 3. From Figs. 8(c) and 9(c), we found that
spectrograms could not be completely decrypted even if the
attacker attacked with the existing method. Note also that this
approach requires knowing the block size in advance. In this
experiment, M was set to a small value to match the existing
model structure. However, a larger M makes the proposed
method even more robust because the key space is larger and
decryption becomes more difficult.

V. CONCLUSION

In this paper, we proposed the privacy-preserving methods
using a secret key for CNN-based models: shuffling and
flipping. The encrypted spectrograms and waveforms obtained
by the proposed methods were difficult to use without the
correct key in the ASR and ASV tasks. In addition, to
evaluate the privacy-preserving performance of the proposed
encryption method, the phase reconstruction and decryption
attack methods were applied to the encrypted data. Our
experiments showed that only the authorized user who knows
the correct key could use the classification system correctly.
The robustness of the proposed methods against existing attack
methods was also confirmed. As future work, we will develop
a novel spectrogram and waveform encryption method that
is less sensitive to block size and also further evaluate the
robustness of the proposed method against existing decryption
methods.

VI. ACKNOWLEDGEMENTS

This work was supported in part by SECOM Science and
Technology Foundation.

REFERENCES

[1] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security chal-
lenges in cloud computing: issues, threats, and solutions,” The journal
of supercomputing, vol. 76, no. 12, pp. 9493–9532, 2020.

[2] N. Tomashenko et al., “The voiceprivacy 2022 challenge evalua-
tion plan,” [Online]. Available: https://www.voiceprivacychallenge.org/
vp2020/docs/VoicePrivacy 2020 Eval Plan v1 4.pdf, 2020.

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(a) Original

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(b) Encrypted

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(c) Decrypted

Fig. 8: Examples of decryption of the spectrogram encrypted
by shuffling (M = 3)

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(a) Original

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(b) Encrypted

0.0 1.0 2.0 3.0
Time(s)

0

2

4

6

Fr
eq

ue
nc

y(
kH

z)

(c) Decrypted

Fig. 9: Examples of decryption of the spectrogram encrypted
by flipping (M = 3)

[3] H. Kiya, A. MaungMaung, Y. Kinoshita, S. Imaizumi, and S. Shiota,
“An overview of compressible and learnable image transformation with
secret key and its applications,” APSIPA Transactions on Signal and
Information Processing, vol. 11, no. 1, 2022.

[4] A. Maungmaung and H. Kiya, “Privacy-preserving image classification
using an isotropic network,” IEEE MultiMedia, vol. 29, no. 2, pp. 23–33,
2022.
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