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Abstract—Feedback active noise control (ANC) offers an
economical means to attenuate noise and is thus used in a variety
of problems, e.g., in automotive or hearables. In practice, stability
needs to be guaranteed also in the face of variations in the
controlled system. Typically, a constrained optimization problem
is solved to integrate this so-called robust stability criterion into
the system design. However, the tracking of constraints at runtime
remains challenging in resource-constrained environments such as
hearables. In this contribution, we propose an efficient algorithm
which is suitable for such environments. This algorithm uses
internal model control (IMC) to steer a parallel connection of time-
invariant filters via uncertainty-aware least-mean-square (LMS)
adaptation, thus facilitating the adaptation at high sampling
rates. The novel algorithm is evaluated through simulation and
measurements with human listeners using ANC headphones as
an example use case. The results show good ANC performance
despite significant savings.

Index Terms—Active noise control, adaptive filters, constrained
optimization, feedback control, robust control

I. INTRODUCTION

The suppression of acoustic noise using methods of ac-
tive noise control (ANC) has attracted steady interest from
researchers and engineers. Advances in digital signal processor
(DSP) technology and algorithms have enabled wide application
of ANC, e.g., in automotive and hearables. Typically, ANC
systems use a time-invariant or adaptive digital filter with a
finite impulse response (FIR) or an infinite impulse response
(IIR). A low processing latency is crucial in generating phase-
inverted cancellation signals, which naturally leads to high
sampling rates [1]–[4].

One suitable strategy to implement ANC is robust feedback.
This involves a microphone that is placed at the desired location
of cancellation. An advantage is that noise is cancelled directly
at the microphone position. However, so-called robust stability,
i.e., stability of the feedback loop in all practical situations,
must be considered in the design. This usually entails a set
of hard constraints on the filter as implied by a model of the
uncertainty that is inherent to the system [5]–[9].

Often, the correlation properties of noise are time-variant,
which suggests the use of adaptive algorithms. Existing adaptive
algorithms that maintain robust stability are based on a
constrained least-mean-square (LMS) algorithm that requires
a frequency discretization to maintain a significant number
of constraints at runtime [4], [8] or expensive linear matrix
inequalities (LMIs) [10]. Such strategies are not feasible in
resource-constrained environments if long impulse responses
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Fig. 1. Block diagram of a discretized system model of a feedback system.

are needed to model the physical system. Commercial ANC
headphones thus often use time-invariant approaches instead.

In this contribution, we propose an efficient adaptive feed-
back ANC algorithm with guaranteed robust stability based
on linear parameter-varying (LPV) control. Typically, LPV
control is applied to known harmonic or tonal disturbances and
combines several time-invariant controllers using an observer-
based switching or interpolation logic [11], [12]. The approach
followed in this work is to combine LPV control and LMS
adaptation in a suitable way. For this, we use internal model
control (IMC) [13], [14] and derive an update equation which
minimizes the residual error using few adaptive weights.

The distinctive novelty in this work is an efficient mechanism
to ensure robust stability. This mechanism is based on sufficient
robust stability conditions that we integrate into the adaptation
at low computational expense. Thus, our algorithm guarantees
robust stability using significantly fewer resources than existing
algorithms, so that LMS adaptation without subsampling and
at high sampling rates becomes practically feasible.

In a case-study using over-ear ANC headphones, we compare
the novel algorithm to an existing one that is computationally
more expensive. We further implement an ANC prototype that
is suitable for state-of-art consumer electronics using a low-
power DSP and low-order IIR filters and assess the performance
using measurements with human listeners.

II. PROBLEM STATEMENT

We consider a feedback ANC system which aims to reduce
acoustic noise at a defined microphone position using a digital
controller K(z). Fig. 1 shows a system theoretic diagram of the
system at hand using a standard digital model [2] that comprises
the disturbance d(n) to be reduced, the residual error e(n)
obtained from a microphone, and the controlled system G(z),
also termed plant or secondary path. The controlled system
is modeled as linear time-invariant (LTI) filter G(z) which
captures the acoustic sound propagation and properties of the
hardware such as microphones, loudspeakers and converters.
Accurate knowledge on G(z) is vital for ANC [4].
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A. Design Specifications

To formalize the goal of reducing the residual error, one
typically considers the sensitivity S(z) and the complementary
sensitivity T (z), defined as [15]

S(z) =
1

1 +K(z)G(z)
, (1a)

T (z) =
K(z)G(z)

1 +K(z)G(z)
. (1b)

The sensitivity relates the residual error e(n) to the disturbance
d(n). For a high attenuation, S(z) assumes a low magnitude
response. In contrast, a low magnitude of T (z) is related
to a high robustness against instability of the feedback loop.
As S(z) + T (z) = 1 ∀ z, an inevitable trade-off between
robustness and performance is implied. Further, attenuation at
one frequency implies amplification at another when G(z) is
not minimum-phase due to the waterbed effect [15].

A further difficulty is that G(z) is generally unknown in
practice [4]. This bears the hazard of feedback loop instability,
which needs to be addressed in the design. A common criterion
is nominal stability, which is given when the closed loop is
stable for a nominal model G0(z) of the secondary path. Often,
the more rigorous specification of robust stability based on
a multiplicative uncertainty model is adopted [5]–[8]. In this
case, variations in G(ejΩ) are treated by a Fourier domain set

Π :
{
G(ejΩ) = G0(e

jΩ) ·
(
1 + ∆(ejΩ)W2(e

jΩ)
)}

, (2)

which intuitively forms a disk in the complex plane. Stability
can then be guaranteed for any G(ejΩ) ∈ Π using the condition∣∣W2(e

jΩ)T0(e
jΩ)

∣∣ < 1. (3)

Here, ∆(ejΩ) is any transfer function satisfying |∆(ejΩ)| ≤ 1,
W2(e

jΩ) is an experimentally determined uncertainty bound
that quantifies the uncertainty of the system under control,
T0(z) is obtained from (1b) using G0(z) and Ω ∈ [0, 2π) is
the normalized angular frequency [8], [15].

B. Internal Model Control

The internal model control (IMC) configuration provides a
parametrization of all controllers that stabilize a given plant
[13] and is thus suitable to realize adaptive feedback ANC. An
IMC controller is obtained by substituting the controller K(z)
as

K(z) =
Q(z)

1−G0(z)Q(z)
, (4)

with G0(z) a time-invariant plant model and Q(z) a feedfor-
ward filter which serves as a new optimization variable. In the
nominal case G0(z) = G(z), the feedback loops cancel out so
that S(z) and T (z) become affine functions of Q(z)

S(z) = 1−G(z)Q(z) (5a)
T (z) = G(z)Q(z) (5b)

and (3) becomes equivalent to the convex condition∣∣W2(e
jΩ)G0(e

jΩ)Q(ejΩ)
∣∣ < 1. (6)
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Fig. 2. Model of adaptive feedback controller K(z) under study.

This permits the use of feedforward methods in feedback ANC,
as used in time-invariant and adaptive control systems [9], [14].

In general, the model assumption G0(z) = G(z) is violated
in practice, since G0(z) is a time-invariant model for a time-
varying system G(z). Inserting (4) into (1a) reveals that S(z)
is then given by

S(z) =
1−G0(z)Q(z)

1 +Q(z)[G(z)−G0(z)]
. (7)

These variations are taken into account by the uncertainty
model, and the influence of the residual term G(z)−G0(z) can
be minimized by selecting a suitable nominal model G0(z), e.g.,
based on experimental measurement data [4]. As an alternative,
one could use an adaptive model G0(z) to identify G(z) in
the loop [14], however, this is beyond the scope of this work.

III. ROBUST CONTROLLER INTERPOLATION

In the following, we propose a novel strategy for implement-
ing robust adaptive feedback ANC. The main benefit of this
strategy will be that fewer weights than usual are adapted so
that robust stability is attained using few constraints. This leads
to a simple adaptation scheme that is compatible with the high
sampling rates that ANC systems are typically operated at.

Fig. 2 shows a block diagram of the proposed system.
The adaptive IMC controller K(z) features a time-invariant
plant estimate G0(z) and I time-invariant filters Qi(z), i ∈
{1, . . . , I} that are connected in parallel. We propose to steer
the contribution of the Qi(z) at runtime using I weights ai as
in [16]. The interpolated filter Q(z) is given by

Q(z) =

I∑
i=1

aiQi(z) (8)

and K(z) is obtained from (4) using Q(z) instead of Q(z).
We define the weight vector a =

[
a1 · · · aI

]T ∈ RI as the
optimization variable and impose I+1 constraints on its entries,

ai ≥ 0 ∀ i and
I∑

i=1

ai = 1Ta ≤ 1, (9)

with 1 ∈ RI a vector of ones. This particular set of constraints
is a sufficient condition for robust stability under certain
circumstances that are elaborated by the following theorem:

Theorem 1. Let K(z) be given by (4) using Q(z) with each
Qi(z) robustly stable in terms of (3) for a certain uncertainty
bound W2(e

jΩ). Then, the interpolation Q(z) according to (8)
is also robustly stable for weights ai that satisfy (9).
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Proof. Using (6) and (8), we note that robust stability of K(z)
is guaranteed if and only if the following inequality holds:∣∣∣∣∣W2(e

jΩ)G0(e
jΩ)

I∑
i=1

aiQi(e
jΩ)

∣∣∣∣∣ < 1 (10)

We show that (10) holds for all ai satisfying (9) by finding an
upper bound for the left-hand side of (10) using the triangle
inequality |

∑
i aiQi(z)| ≤

∑
i |aiQi(z)|. This leads to

I∑
i=1

ai ·
∣∣W2(e

jΩ)G0(e
jΩ)Qi(e

jΩ)
∣∣ < 1, (11)

where (11) implies (10). As per assumption that all individual
terms

∣∣W2(e
jΩ)G0(e

jΩ)Qi(e
jΩ)

∣∣ satisfy (6), it follows that

I∑
i=1

ai ·
∣∣W2(e

jΩ)G0(e
jΩ)Qi(e

jΩ)
∣∣ < I∑

i=1

ai ≤ 1, (12)

with 1Ta ≤ 1 given by (9). Thus, (12) implies (11) which, in
turn, implies (10).

Theorem. 1 states that robust stability in terms of the widely
used unstructured uncertainty model persists for combinations
of controllers if IMC is employed and (9) is met. Thus, the
adaptation is robust against variations in G(z). This does not
cover the stability of the adaptation itself, which is treated in
the literature and which is essentially given when algorithm
parameters such as learning rates are chosen appropriately [4].

The proposed algorithm requires a suitable design of the
time-invariant part, i.e., G0(z) and Qi(z), as well as an update
rule to find optimal coefficients ai within the bounds of (9) at
runtime. Both of these aspects are discussed below.

A. Time-Invariant Part

First, we consider the time-invariant part of the system. The
underlying question is how a-priori knowledge is exploited in
the design. In general, the required number and type of filters
is application-dependent. For example, in a car headrest system,
properties of the disturbance often can be estimated in advance
since potential noise sources such as engines are known. For
headphones, a fair estimate of the passive insulation is usually
available [17], which suggests the mild assumption that the
disturbance is predominantly of low frequency. We note that
both, G0(z) and Qi(z) can be found using standard methods.

The selection of a nominal model G0(z) is a common task
in control applications. This aspect is treated in Sec. II-B and
in the literature [15]. From now on, we thus assume that a
suitable model G0(z) is available.

To design the controllers, standard methods that consider
robust stability can be used. This includes methods based on
IMC [7], [8] that determine the filters Qi(z) directly. However,
H∞ synthesis [5] or non-convex optimization [6] can also
be used to first design a controller Ki(z) and then solve (4)
for Qi(z). Joint design procedures [16] are also promising
but exceed the scope of this work. A common benefit is that
specifications are divided among multiple controllers to mitigate
adverse effects such as overshoot due to the waterbed effect.

B. Time-Variant Part

In the following, we assume that Qi(z) that correspond to
robustly stable controllers Ki(z) are available and focus on the
adaptation of the weights ai at runtime. We derive a variant
of the LMS algorithm to obtain an update rule which aims
to minimize the expected error signal power and guarantees
robust stability using the devised set of constraints (9). The
objective function considers the error e(n), which is given by

e(n) = d(n)− d(n) ∗ g0(n) ∗ q(n) (13)

in the nominal case [4]. Here, g0(n) and q(n) denote the
impulse responses of G0(z) and Q(z), respectively. We follow
a stochastic approach to obtain the optimum coefficient vector
a in each time instant n based on the problem

a =argmin
a

J(n) := e2(n)

subject to ai ≥ 0 ∀ i and 1Ta ≤ 1.
(14)

Equation (14) casts the design objective as a convex problem
with a guaranteed global optimum. However, an iterative solver
is needed to solve (14) [18], which collides with requirements
on complexity and latency that most ANC systems face. A
penalty method [9] was proposed for these cases, which we
apply to the problem at hand with some modifications. By
introducing penalty terms, we obtain a modified cost function

J̃(n) = J(n) + σmax{1Ta, 1}2 + σ

I∑
i=1

max{−ai, 0}2.

(15)
The scaling factor σ ∈ R+ is used to control the strictness that
constraints are enforced with. If all constraints are satisfied,
J(n) and J̃(n) have the same global minimum. Otherwise
at least one penalty term becomes active, thus reducing the
constraint violation successively until it becomes zero.

We use the method of steepest descent with learning rate
γ ∈ R+ to obtain the coefficient update rule

ai(n+ 1) = ai(n)−
γ

2
· ∂J̃(n)
∂ai(n)

, 1 ≤ i ≤ I. (16)

The index n indicates that the weights are now time-variant.
The derivative of J̃(n) with respect to ai(n) is given by

∂J̃(n)

∂ai(n)
= −2e(n) · [d(n) ∗ g0(n) ∗ qi(n)]

+ σ · (1Ta(n)− 1) · [sign(1Ta(n)− 1) + 1]

+ σ · ai(n) · [sign(−ai(n)) + 1],

(17)

where the function sign(·) returns the sign of its argument.

IV. EVALUATION

We study the proposed algorithm using Bose QC45 over-ear
headphones as an example. We removed the manufacturers
ANC electronics and instead established a direct connection to
a DSP which runs the ANC algorithm. For clarity, we consider
only the left ear channel in the following.

To account for variations in G(z) we use the uncertainty
model from [7]. Fig. 3 shows the 56 measurements that this
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Fig. 3. 56 magnitude responses measured for |G(z)|.
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Fig. 4. Nominal sensitivities Si(z) achieved by the controllers Ki(z).

model is based on. It reflects the wearing situations of 16
different persons and also covers corner cases, e.g., loose fits
and tight fits, which are relevant to ensure stability when
handling the device.

We used six different types of ambient noise from the ETSI
EG 202 396-1 database [19] that the ANC system is intended
to suppress. These signals are examples of real-world noise
with different correlation and stationarity properties.

A. Simulation

In the following, we compare the proposed algorithm to the
adaptive system from [9] using an FIR filter Q(z) with 512
adjustable tap weights. This algorithm is a suitable baseline due
to its conceptual similarity, i.e., it is also based on IMC and
imposes the robust stability constraints using penalty functions.
Due to the higher number of weights, the approach is more
versatile than ours, but a slow convergence rate is a potential
drawback as noted in [9].

For our algorithm, we designed I = 3 time-invariant FIR
filters Qi(z) with 512 taps at a sampling rate fs = 48 kHz
using [7] and [8] and used (16) to adapt the weights ai(n). The
performance goals were chosen to increase the control band-
width over time-invariant schemes, resulting in an arrangement
with spectral separation similar to a filterbank. Fig. 4 shows
the nominal sensitivities Si(z) that the designed controllers
Ki(z) achieve. Note that the number of adaptive parameters
is about two orders of magnitude smaller for our algorithm.

The comparison is made under equivalent conditions, i.e.,
both adaptive filters can influence 512 taps, use the same
uncertainty model and use the average normal fit as nominal
model G0(z). The penalty scaling and the learning rates for
both algorithms were chosen to maximize the attenuation with
a comparable and low constraint violation.

Fig. 5 shows the disturbance d(n) and the achieved residual
errors e(n) for the nominal case G0(z) = G(z). For reference,
the noise type is indicated and the evolution of the weights
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Fig. 5. Simulation results: ambient noise, remaining disturbance d(n) after
passive attenuation and error signals e(n) achieved by the baseline [9] and
the proposed algorithm as well as the evolution of the weights ai(n).
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Fig. 6. Simulated signal PSDs: ambient noise ( ), disturbance ( ),
and errors using baseline algorithm [9] ( ) and proposed method ( ).

ai(n) over time is also shown. The figure reveals that the
constraints are maintained tightly.

We extend the analysis by considering Fig. 6, which depicts
the long term signal power spectral densities (PSDs) of this
experiment. For clarity, the magnitude responses were smoothed
using a 1/6 octave average filter. To consider the case of
an imperfect plant model, i.e., G0(z) ̸= G(z), we further
evaluated the performance for all 16 listeners. The decibel-
averaged error signals are marked in Fig. 6 as dotted lines. We
observe that the performance for train and aircraft is similar
for both methods. However, the baseline is outperformed for
the instationary noises kindergarten and pub, especially for
frequencies above 250Hz that result from abrupt speech onsets.
Here, our algorithm profits from the low number of weights
which imply a faster convergence rate. This advantage was
also reported in [20], albeit for a feedforward ANC system.

B. Real-Time ANC System

We study the ANC performance in a real-time application.
For this, the proposed adaptive controller was implemented on
an Analog Devices ADAU1787 audio codec operating at a sam-
pling rate fs = 192 kHz. We designed I = 3 new filters Qi(z)
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Fig. 7. Measured error signal PSDs with ANC off ( ) or on ( ) of 15
individual subjects (thin bright lines) and decibel-averaged case (thick lines).

for this rate and applied an order reduction algorithm [15].
The resulting 16th order IIR filters are compatible with the
resource-constrained environment and achieve a performance
very similar to that shown in Fig. 4. The algorithm [9] was not
considered due to insufficient resources on this hardware.

Using the headphone microphones, we measured the error
signal e(n) for 15 different subjects in a measurement room
that complies with the recommendation ITU-R BS.1116-2 [21].
We played back the ambient signal shown in Fig. 5 over one
subwoofer and 8 studio speakers with a circular distribution
around the subject. Two measurements were made for each
subject, one without and one with the ANC system activated.
This allows to assess the active attenuation in an isolated
manner. The overall setup was very similar to Sec. IV-A,
however, signal levels differed slightly due to the playback
setup. The results are cross-validated because 5 of the 15
subjects were not considered in the design of the filters Qi(z).

To analyze the measurements, we divided them by noise
type. Fig. 7 shows the error signal magnitudes for all subjects
with ANC off and on, respectively. For clarity, the curves
were smoothed using a 1/6 octave band filter. The decibel-
averaged case is also indicated for reference. We observe a
spread of about 5 dB around the mean active attenuation, which
is partially due to the measurement setup.

The low frequency components in pub and kindergarten,
e.g., chair movement sounds, are more significant compared to
Fig. 6 due to the playback setup. The algorithm thus emphasizes
low frequencies more, which results in a slightly lower average
attenuation of about 10 dB. For the noises train and aircraft, we
achieved a performance similar to Fig. 6 with a peak attenuation
of about 20 dB. Overall, the algorithm successfully adapts to
the intricate time-varying correlation properties of the signals
in a way that is robust to the person-induced variance.

V. CONCLUSION

We propose a novel algorithm for adaptive feedback ANC
which guarantees robust stability. The algorithm interpolates
between robust time-invariant controllers without subsampling

using LMS adaptation and IMC. The main difference to
existing methods is a simplified mechanism to guarantee
robust stability using few constraints on the adaptive weights.
The low number of adaptive weights offers a reduction of
computational complexity and a faster convergence rate at the
expense of versatility. The resulting algorithm was evaluated
using simulations as well as measurements with human listeners
and a real-time prototype headphone using low-power DSP
hardware. For resource-constrained ANC applications such as
hearables, the algorithm offers a considerable performance
increase at moderate computational cost.
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