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Abstract—In this paper, a low-complexity implementation of 

the recently proposed affine projection tanh algorithm in 

conjunction with a frequency shifting performed on speech 

segments for acoustic feedback cancellation (AFC) is presented. 

Dichotomous coordinate descent (DCD) iterations having a 

variable input parameter are used to reduce its numerical 

complexity. The simulation results show that the proposed 

approach can achieve better performance than competing 

methods for both incoming speech and music signals. 
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I. INTRODUCTION  

In hearing aid (HA) devices, the inherent acoustic 
feedback loop between amplified microphone signals played 
through loudspeakers leads to reverberation echoes and 
howling [1]-[4]. The feedback problem is caused by the small-
sized and open-fitting HAs [2]. One suboptimal solution is 
feedforward suppression using notch filtering [3]. A better 
solution is to use feedback cancellation adaptive algorithms 
[1],[2]. The bias introduced by the adaptive filter can be 
reduced using various approaches: frequency shifting [4] – 
[5], probe noise injection [6], two microphone solutions [7]- 
[8], the prediction-error-method AFC (PEM-AFC) [1], etc. 
The PEM-AFC involves using the inverse of the estimated all-
pole filter to prefilter the loudspeaker and microphone signals 
before adapting the AFC. A robust AFC method based on the 
affine projection algorithm (APA) using the improved 
practical variable step size (IPVSS) from [9], the prediction 
error method (PEM-IPVSS-APA) and frequency shifting (FS) 
was proposed in [10]. Hybrid implementations reduce the 
duration of the howling (e.g. the hybrid normalized least mean 
square (H-NLMS) algorithm [11], the combination of the 
PEM with the simplified Kalman filter (SKF) [12], hybrid 
approach using the maximum Versoria-criterion (MVC)-
based algorithm [13] and the switched PEM with a soft-
clipping (swPEMSC) algorithm [14]. A low complexity of the 
later algorithm using dichotomous coordinate descent 
iterations proposed in [15] has been presented in [16] and 
called swPEMSC-DCD.  

In this paper, we propose an improved version of the 
algorithm of [16]. Three novel contributions of this study are 
presented. First, the affine projection tanh algorithm (APTA) 
[17] was used instead of the APA as in [16].  In [18] it was 
shown that, for identification purposes, it is better to use a 
controlled tanh non-linearity on the loudspeaker output signal. 
In [11], the tanh non-linearity is applied on the error signal. 
The novelty and advantage of using APTA is that the tanh 
non-linearity is applied on the preprocessed error signals with 
the pre-whitening filter. Secondly, its low complexity is 

achieved by using a new variable input parameter for the 
dichotomous coordinate descent (DCD) iterations [15] in 
APTA (DCD-APTA). Combining both the APTA and 
modified DCD have not yet been used for AFC. Thirdly, the 
frequency shifting is used instead of the probe noise as in [20] 
and is applied only when a voice activity detector (VAD) 
detects speech, not all the time as in previous studies [10]. The 
acronym used for the proposed algorithm is swPEMSC-DCD-
APTA. The remainder of this paper is organized as follows. 
Section II presents the swPEMSC-DCD-APTA, and Section 
III presents the simulation results. Finally, the conclusions and 
future work are presented. 

II. THE PROPOSED ALGORITHM 

Figure 1 illustrates the scheme of the proposed method. It is 

based on the scheme of [14], with important changes related 

to the used swPEMSC-DCD-APTA and the FS + VAD block. 

 

Fig. 1. The proposed AFC scheme 

The microphone signal is the sum of the incoming signal, 

( )u k , and the feedback signal, ( )v k : 

( ) ( ) ( ) ( ) ,FSVADx k u k F q y k= +                                            (1) 

where k is the time index, ( )FSVADy k  is the loudspeaker 

signal, ( ) ( ) ( ) ,FSVADv k F q y k=  ( ) ,TF q = f q f  is the 

impulse response of the feedback path having fL

coefficients, 
111  ... 

T
L fq q

− +− =
 

q , 1q−  is the time-shift 

operator, ( ) ( ) ( ) ,y k K q e k=  where ( ) ,dkK q K q−= kd  

and K  are the delay and the gain of the forward path 

respectively. The error signal given by  

( ) ( ) ( ) ( )ˆ ,FSVADe k x k F q y k= −                                                       (2) 

where ( )F̂ q  is the estimated feedback path having 
f̂

L  

coefficients. Also, we have ( ) ( ) ( )1 ,u k G q w k−=  (common 
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assumption for PEM [1], ( )w k  is a white Gaussian noise) 

( ) ( ) ( )ˆ ,px k G q x k= ( )FSVADy k  is the loudspeaker signal and 

output of the block that performs a frequency shifting taking 

into account the output of the VAD.  

The pre-whitened signals from Fig. 1 are 

( ) ( ) ( ) ( )ˆ ,p p pe k x k F q y k= −  ( ) ( ) ( )ˆ ,p FSVADy k G q y k=  

and ( ) ( ) ( )ˆ .px k G q x k=  The AR coefficients are found 

using the Levinson-Durbin method [11]. The soft clipping 

stability detector (SCSD) is used to switch between the 

prediction error method using soft clipping (PEMSC) and 

NLMS (PEMSC-NLMS) and PEMSC using APTA-DCD 

(PEMSC-APTA-DCD). As in [11], [12] and [14] the 

approach allows us to deal with both situations when the 

system is close to instability or has converged. It is using a 

nonlinear function of the error signal [11]: 

 ( ) ( ) ( ) SCl k L e k e k = −                            (3) 

 ( ) ( )( )tanh /SCe k e k =                           (4) 

where L is a binary function (1 for a positive value and 0 

otherwise),   is a threshold and    is a parameter [11]. The 

signal ( ) ( ) ( )SCy k K q e k=  passes through a frequency-

shifting block only during the speech segments detected by 

the VAD, otherwise it is left unchanged. When the VAD 

detects silence ( ) ( )FSVADy k y k= , otherwise, if detects 

speech we have:   

( ) ( ) ( ) ( ) ( )0cos 2 sin 2 ,FSVAD H oy k y k f k y k f k = −           (5) 

where ( )Hy k  is the Hilbert transform of ( )y k  [10]. 

Because the FS adds roughness for high of  values, a small 

value of of  is recommended [5]. We used 3of = in our 

simulations as in [16].  

By replacing the APA part with APTA [17], the update rule 

for the swPEMSC-APTA is the following: 
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            (6) 

where N is the projection order, NI  is the identity matrix, 

( )p kY  is a 
f̂

L N matrix collecting N recent pre-whitened 

loudspeaker signal vectors of length 
f̂

L  

( ) ( ) ( )ˆ,..., 1
T

p p p f
k y k y k L = − +

  
y  vectors, 1  and 2  

are step-sizes 2 1( )  ,   is the APTA parameter, 

NLMS  and APTA are the regularization parameters for the 

NLMS and APTA parts, respectively.  

The update rule of Eq. 6 for high projection orders is very 

complex, because it involves the inversion of a N × N matrix. 

The numerical complexity of this part is proportional with 
3N , the number of multiplications and divisions being 

( )2 3
ˆ2
f

N N L N N+ + + [14]. Therefore, the overall 

complexity of the update rule must be reduced for high-

projection-order values. DCD iterations are proposed to solve 

the linear system of Eq. 6: 

( ) ( ) ( ) ( )( )tanh .T
p p APTA pk k k k  + =

 
Y Y z e        (7) 

We then use the ( )kz solution to obtain the following 

swPEMSC-DCD-APTA update rule: 
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A. Dichotomous coordinate descent 

The equations of the multiplier-less and division-less 

dichotomous coordinate descent algorithm version from 

Table IX in [19] are used to find the ( )kz vector. The 

accuracy of the DCD solution of the linear system depends 

on the maximum expected amplitude H of the solution 

(chosen as a power of two), the number of bits bM   and the 

number of updates, .uN  The DCD iterations are ‘successful’ 

if the solution and the residual vector are updated otherwise, 

they are ‘unsuccessful’ [19]. In the worst-case scenario, the 

maximum number of additions in our case is 

( )2 1u b uN N M N+ − + [19]. The use of DCD provides an 

important complexity reduction in terms of multiplications 

and divisions, especially if the N value is high. The value of 

H is fixed at each iteration, it should be high enough, 

otherwise, the convergence could be too slow [19]. We 

observed that the maximum value of the solution ( )kz  can 

vary a lot during disturbances (howling, impulsive noises, ill-

conditioned matrices). The ceiling of the closest value to the 

log2 of the absolute maximum elements of the previous 

solution is computed. This exponent value is allowed to be 

within a minimum and a maximum number depending on the 

desired range. The H value for the current algorithm iteration 

is the power of two of the computed exponent value. These 

computations add N+4 comparisons and a logarithmic 

operation to the overall complexity.   

III. SIMULATION RESULTS 

The performance of the considered algorithms was 

investigated using the feedback path characteristics shown in 

Fig. 2. They were also used in [10], [14] and [21]. Speech 

(male and female voices from NOIZEUS database [22]) and 

music signals of 50 seconds were used as incoming signals. 

The tracking behavior was investigated by switching after 25 

seconds from the normal path (F1) to the closest feedback 

path (F2) [14]. The equations of misalignment (MIS) and 

added stable gain (ASG) from [10] were used to evaluate the 

performance of the AFC system. 

The perceptual evaluation of speech quality (PESQ) measure 

[23] was computed for speech signals. The order of the 

prediction error filter was 20, the sampling frequency was 

16sf = kHz, the forward path gain was 30 dB, 100,fL =  

ˆ 64,
f

L = 96,Kd = 1,fb
d = 16,bM = 0.8,U =

0.0008,L =  the projection order was 4,N =  and the 

regularization factor values are those from Table I of [10]. 

87



 

Fig. 2. The amplitude responses of the measured feedback paths [10]. 

The remaining parameters were 0.9999,  0.15, = = 2, =   

  was 0.125 for simulations shown in Figs. 4-6, and

610 .APTA NLMS  −= =  The low complexity VAD from [24] 

was used. We assured that at least the first 6 frames were 

silence frames as proposed in [24] and the same parameters 

from [24] were used (overlapping frames of 20 ms by 50%, -

3-frame neighborhood, offset of 5 dB, 0.95, =  

0 1 0 16 dB, 2.5 dB, 30 dB, 50 dB, NFFT=256).E E = = = =  

In Fig. 3, the norm of the difference between the ideal 

solution for the implicit system of equations (Eq. 7) and the 

solution using various numbers of updates is plotted ( 1uN =

in Fig. 3a and 4,uN = and 8uN =  in Fig. 3b).  

 

Fig. 3. The error norm for various uN  values; a) 1uN =  b) 4uN =  and 

8uN =  

As expected from other DCD implementations (e.g. [19], 

[25]-[26]) using more DCD iterations leads to a performance 

closer to that obtained using the exact solution for the linear 

system of equations. It can be noticed that the smallest errors 

are obtained for 8.uN = The attained precision level is 

sufficient for the proposed algorithm and this value was used 

for the DCD iterations in further simulations. 

In Fig. 4 the influence of using a variable H value for the 

DCD iterations is investigated. In Fig. 4a  the MIS 

performance difference between the MIS performances of the 

proposed algorithm obtained when using a fixed H value of 
12 0.5− =  and a variable H value respectively. The incoming 

signal was a speech signal. The exponent of H was allowed 

to vary around -2 (i.e. between -2 and 1).  Therefore, H takes 

one of the the following values depending on the maximum 

vector solution absolut value: 0.25, 0.5, 1, 2 and 4. The power 

of two exponents of H are shown in Fig. 4b.  

 

Fig. 4. The MIS performance using music  input signal with a sudden 

change of the feedback path after 25 seconds b) The exponent values of H.  

It can be noticed that while the MIS performance 

improvement is rather small for F1, it is higher for F2 (about 

0.5 dB on average). It can be concluded that a variable H 

value could lead to performance improvement due to a better 

adaptation of the DCD approach since H initialize its step 

value [19].  

In Fig. 5, the influence of the FS for an incoming music signal 

is examined by comparing the MIS and ASG performances 

of the proposed algorithm with and without the FS. It can be 

seen that the FS block has a positive effect most of the time; 

both the average MIS and ASG values are better with about 

3 dB.  

Similar conclusions can be obtained when using speech 
signals and the FS + VAD block is used. The reason to use a 
VAD is that the howling was less annoying when frequency 
shifting was not performed on silence frames.  It can be seen 
from Fig. 6b that the ASG improvement is happening for most 
of the signal. The average improvement for both feedback 
paths over the case when the FS + VAD block is bypassed is 
about 5 dB and the average PESQ value is increased by 0.8 
(from 3.3 to 4.1). In Fig. 6a, the input to the FS +VAD block 
and the VAD output are shown. The influence of the VAD 
output on the overall algorithm performance depends on the 
extension of the silence regions in the incoming signal and it 
accounts for a PESQ score improvement of about 0.2 for the 
shown example. The output of the VAD was almost always 1 
for the used music signals, therefore, for the incoming music 
signals, the ASG and MIS curves were very close regardless 
if the VAD was used or not. 

The influence of  is investigated in Fig. 7. Four values were 

used: 0.125, 0.5, 1 and 2. 
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Fig. 5. Performance using music input signal with a sudden change of the 

feedback path after 25 seconds with and without frequency shifting, 

respectively a) MIS b) ASG.  

 

Fig. 6. a) The input signal to the FS + VAD block and the VAD output b) 

The ASG Performance using speech  input signal with a sudden change of 

the feedback path after 25 seconds      

It can be noticed that 0.5 = lead to the best MIS and ASG 

values most of the time and brings about 0.5 dB average 

improvement over the next performing  value. This value 

was used for the next simulations. 

The performances of the proposed algorithm, swPEMSC-

DCD [16], and H-NLMS [11] with a music signal input and 

feedback path change from F1 to F2 after 25 seconds are 

shown in Fig. 8.  The proposed algorithm has an improved 

ASG performance of about 2.5 dB over the swPEMSC-DCD 

and about 6.3 dB over the HNLMS algorithm. Also, if using 

the swPEMSC-DCD-APTA, the duration of the howling 

period is reduced. In Fig. 9 a zoom of the 0.3 seconds 

loudspeaker signal after the 25 seconds is shown. Howling is 

happening at this time due to the change of the feedback path. 

It can be noticed from Fig. 9 that the swPEMSC-DCD and 

swPEMSC-DCD-APTA generates shorter annoying higher 

amplitude sounds than the HNLMS algorithm. One 

advantage of the swPEMSC-DCD-APTA is its low numerical 

complexity, although it is about 15% higher than that of the 

swPEMSC-DCD algorithm for the same used parameters due 

to performing a VAD on 20 ms frames and tanh operations. 

 

Fig. 7. Performance using speech  input signal with a sudden change of 

the feedback path after 25 seconds and various   values a) MIS b) ASG.      

 

Fig. 8. ASG performance using music  input signal with a sudden change 

of the feedback path after 25 seconds 

 

Fig. 9. Zoom on the howling signal after the sudden change of the 
feedback path after 25 seconds; a) swPEMSC-DCD-APTA b) H-NLMS c) 

swPEMSC-DCD 

The increase of complexity due to the use of a variable H for 

the DCD iterations, and VAD method is rather small and 

acceptable if taking ito account the overall complexity of the 

adaptive filtering method and the performance 
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improvements. The overall reduction if the numer of 

additions is taken into account for using the DCD depends on 

the projection value, the number of updates and the number 

of bits [19]. For the considered parameters it was around 30% 

reduction in the number of additions, but if some minor 

performance losses are acceptable, it could be higher for 

higher projection orders, lower number of updates and lower 

number of bits. It was shown in [16] that the swPEMSC-DCD 

algorithm complexity is several times lower than that of the 

swPEMSC [14] and about 40% lower than the H-NLMS [11] 

in terms of multiplications. Therefore, the complexity of the 

proposed algorithm is also smaller that that of the swPEMSC 

and H-NLMS algorithms in terms of multiplications for the 

considered parameters. 

IV. CONCLUSIONS AND FUTURE WORK 

A low-complexity acoustic feedback cancellation method 

combining the affine projection tanh algorithm, a variable 

input parameter DCD approach, frequency shifting, and voice 

activity detection is proposed. The performance of 

swPEMSC-DCD-APTA is compared with that of competing 

methods for AFC systems for hearing aids and its advantages 

are proved through simulations. Future work will be focused 

on reducing the howling by using variable steps size versions 

[27], advanced adaptive filtering [28] and howling detection 

methods [29]. 
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