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Abstract—Crosstalk cancellation (CTC) systems are crucial for
loudspeaker-based reproduction of binaural signals. Two common
paradigms for designing CTC filters exist. The first paradigm is
based on inverse filtering, which utilizes convex optimization to
obtain FIR CTC filters. The second paradigm is based on methods
from optimal control, such as H-2 or H-infinity synthesis, to obtain
optimal IIR filters in state-space form. In this contribution, we
study similarities and differences of both paradigms. Based on
our findings, we show how to state FIR CTC filter optimization
problems advantageously to address the inherent trade-off between
channel separation and equalization in an enhanced way.

Index Terms—Control system design, crosstalk cancellation,
inverse filtering, optimal control, weighted least squares

I. INTRODUCTION

Binaural audio has gained increasingly more attention in the
past few years. Many applications of binaural audio focus on
headphone-based playback. Yet, loudspeaker-based playback
of binaural audio can be preferred in certain applications [1].
Loudspeaker-based playback, though, causes crosstalk that
alters binaural cues, which enable sound source localization,
and crosstalk ultimately degrades the listening experience. As
a remedy, CTC filters have been proposed to eliminate the
crosstalk.

A large variety of crosstalk filter design methods has been
proposed in the past decades. Most design methods yield
finite impulse response (FIR) filters as a result of solving
a convex minimax or least-squares problem. The problem is
either solved in the time domain or in the frequency domain [2]–
[7]. Alternatively, it has been proposed to utilize state-space
methods that are common in control engineering [8], [9]. In
general, these methods yield IIR CTC filters. Moreover, the
CTC filter design can either be conducted separately for each
individual input channel using a single-input-multiple-output
(SIMO) topology, or jointly for all input channels using a
multiple-input-multiple-output (MIMO) topology.

Design goals often have frequency-dependent requirements.
This can be considered in the control framework by means of
so-called plant augmentation using shaping filters. Here, plant
refers to the acoustic system. These shaping filters allow, e.g., to
apply a frequency weighting to error signals and/or to penalize
control effort. The former is encountered in the minimax FIR
design method in the simple form of scalar weightings in [3].
The latter is commonly referred to as regularization in the
least-squares FIR CTC filter design methods, e.g., in [4].

Previous works have not addressed the links between inverse
FIR filter design and optimal control-based IIR filter synthesis

for CTC applications. The aim of this paper is three-fold.
Firstly, we highlight similarities between both paradigms and
point out under which circumstances they coincide. Secondly,
we study the impact of the MIMO and SIMO topology on
the CTC performance. Thirdly, inspired by mixed-sensitivity
controller synthesis, we extend FIR CTC filter design methods
by introducing frequency-dependent weights. As a result, the
commonly used least-squares or minimax FIR CTC filter design
methods now comprise frequency-weighted cost functions, or
filter gain limitations. We demonstrate that the more precise
control offered by the SIMO topology can improve the CTC
performance when using suitable shaping filters.

II. SYSTEM MODELS

The CTC system model consists of T loudspeakers, R input
channels, and R receivers (microphones). In contrast to sound
field reproduction, where R ≠ R, typical CTC setups reproduce
one binaural signal for one listener such that R = R = 2.

A. FIR System Model

The CTC system and the filter design problem can be
described by representing impulse responses (IRs) of FIR filters
as vectors and convolution matrices, as in [5]. The acoustic prop-
agation model, e.g., including head-related transfer functions
(HRTFs), from transmitter t to receiver r shall be given by an
FIR filter of length Nh as hrt = [hrt(0), . . . , hrt(Nh−1)]

T
.

The corresponding (Nh +Nc − 1) × Nc convolution matrix
shall be denoted as hrt, and the MIMO convolution matrix is

h =

h11 . . . h1T
...

. . .
...

hR1 . . . hRT

 . (1)

The Nc-tap FIR CTC filter, in Atal-Schroeder CTC struc-
ture [10], from input channel ρ to transmitter t is ctρ =

[ctρ(0), . . . , ctρ(Nc − 1)]
T
. If h is multiplied from the right

with the stacked vector of all those CTC filters which receive
the ρ-th input signal, cρ =

[
cT1ρ, . . . , c

T
Tρ

]T
, the cascade IRs

from input ρ to all receivers are obtained in stacked form.
The desired cascade (or target) IR vectors for input ρ, stacked
similarly as dρ =

[
dT
1ρ, . . . ,d

T
Rρ

]T
, include the desired IRs

drρ = [drρ(0), . . . , drρ(Nd − 1)]
T from input ρ to receiver r

of length Nd = Nh +Nc − 1. To penalize high amplifications
in the CTC filters, a regularization term can be introduced into
least-squares formulations [4]–[7]. Therefore, we define an FIR
regularization filter b = [b(0), . . . , b(Nb − 1)]

T of length Nb.
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B. MIMO State-Space System Model

A MIMO system model without explicit cross-path outputs,
similar to [9], is shown in Fig. 1. The quantities of the
MIMO topology are indicated by tildes, and we consider z-
transforms of discrete-time signals. The listener perceives the
R-dimensional output signal Ỹ(z) =

[
Ỹ1(z) , . . . , ỸR(z)

]T
=

H(z) Ũ(z). Here, H(z) denotes the transfer function matrix
(TFM) of the acoustic system. Similarly, the TFM of the
CTC filters C̃(z) relates the R-dimensional input signal
S(z) =

[
S1(z) , . . . , SR(z)

]T
and the T -dimensional loud-

speaker signals Ũ(z) =
[
Ũ1(z) , . . . , ŨT (z)

]T
, given by

Ũ(z) = C̃(z)S(z). The R-dimensional desired cascade output
signal is D̃(z) = Ã(z)S(z). To suppress the crosstalk, Ã is
chosen to be a diagonal matrix and includes the desired cascade
transfer functions (TFs), including a modeling delay [5], on
the diagonal entries. The error signal between the desired
and the actual signal is Ẽ(z) = D̃(z)− Ỹ(z). In addition, a
weighting W̃(z) is introduced to enable frequency-selective
optimization of the errors, i.e., Ẽw(z) = W̃(z) Ẽ(z), as in [8].
Here, W̃(z) = IR ⊗ W̃ (z) is a diagonal matrix as the same
frequency weighting shall be applied to each error signal. This
is because the MIMO topology outputs one error signal for
each input signal. The plant is augmented by regularization
signals Ẽb(z) = B̃(z) Ũ(z) with a diagonal TFM weighting
filter B̃(z) to enable control over the filter gain similar to [5].
Note that W̃(z) and B̃(z) correspond to two of three shaping
filters in the widely-used mixed-sensitivity approach [11].

Applying H2 or H∞ control system synthesis methods
requires the block diagram in Fig. 1 to be cast into a linear
fractional transformation (LFT) form [9], [11], as shown in
Fig. 3a. While this might appear to be a feedback scheme
at first, it is not. It holds that Q̃(z) = S(z) as the model
in Fig. 1 is a feedforward scheme. In the LFT form, the
output G̃(z) =

[
ẼT

w(z) , Ẽ
T
b (z)

]T
is to be minimized, and

the output Q̃(z) is fed to the controller K̃(z). Note that the
term controller stems from control theory, but it essentially
corresponds to the CTC filters. The plant P̃(z) can be
represented as a standard state-space system with (R+ T +R)-
dimensional output γ̃(k) and (R+ T )-dimensional input ν̃(k),
with discrete time index k. We define an Nx̃-dimensional
state-vector x̃, which essentially contains delayed versions of
input samples to P̃(z). Then, the summing and filtering in
Fig. 1, and the additional interconnections to and from the
controller K̃(z) in Fig. 3a can be implemented with appropriate
state-space matrices [12], i.e., with a state transition matrix
Ã ∈ RNx̃×Nx̃ , an input-to-state matrix B̃ ∈ RNx̃×(R+T ), a
state-to-output matrix C̃ ∈ R(R+T+R)×Nx̃ , and a feedthrough
matrix D̃ ∈ R(R+T+R)×(R+T ). The state-space representation
can be formalized by

x̃(k + 1) = Ãx̃(k) + B̃ν̃(k) , (2a)

γ̃(k) = C̃x̃(k) + D̃ν̃(k) . (2b)

The overall TF from the input signal S(z) to the LFT model
output signal G̃(z) is described by the matrix T̃SG̃(z).

S(z) C̃(z)

Ã(z)

H(z)

W̃(z)

B̃(z)

Ỹ(z)

D̃(z) Ẽ(z) Ẽw(z)

Ũ(z) Ẽb(z)

Fig. 1: Augmented MIMO system model

Sρ(z) Cρ(z)

Aρ(z)

H(z)

Wρ(z)

B(z)

Yρ(z)

Dρ(z) Eρ(z) Ew,ρ(z)

Uρ(z) Eb,ρ(z)

Fig. 2: Augmented SIMO system model for input ρ

C. SIMO State-Space System Model

The error terms in G̃(z), which is to be minimized in the
MIMO topology, from Sec. II-B appear in aggregated form, i.e.,
the individual error contributions due to equalization mismatch
and crosstalk are indistinguishable. For a better control over the
error contributions, we propose to instead consider R SIMO
systems as depicted in Fig. 2. This topology is comparable
to the one found in the FIR CTC filter design methods, e.g.,
in [3], [5]. The desired output for all channels r ̸= ρ is
zero except for output channel r = ρ such that the columns
of the matrix Ã(z) are considered as separate vectors Aρ(z)
instead. This separation allows to explicitly access the crosstalk
signals and hence choose different weighting functions on the
diagonal of Wρ(z) for the errors of the desired direct-path and
undesired cross-path signals. This can be exploited to increase
the channel separation, as in [3]. In general, the filters C(z)
and C̃(z) are not identical (cf. Sec. IV).

As above, the SIMO systems can be represented in the LFT
form as shown in Fig. 3b. The output to be minimized is
Gρ(z) =

[
ET

w,ρ(z) ,E
T
b,ρ(z)

]T
. Each SIMO system defines a

separate state-space system with Nx states as

xρ(k + 1) = Axρ(k) +Bνρ(k) , (3a)
γρ(k) = Cρxρ(k) +Dρνρ(k) (3b)

with Aρ ∈ RNx×Nx ,Bρ ∈ RNx×(1+T ),Cρ ∈ R(R+T+1)×Nx ,
and Dρ ∈ R(R+T+1)×(1+T ). Here, the overall TF TSρGρ

(z)
is vector-valued as it relates a single channel to one direct path,
R−1 cross paths and T augmented regularization outputs. Note
that we refer to this system as SIMO because the controller is
a SIMO system.

A noteworthy advantage of the SIMO topology is that the
computational complexity of the design method can be reduced
as designing R controllers for state-space systems of order Nx

can be computationally cheaper than designing one controller
for a state-space system of larger order Nx̃.
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P̃(z)
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S(z) G̃(z)
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=S(z)
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(a) MIMO controller model

Pρ(z)

Kρ(z)

Sρ(z) Gρ(z)

Qρ(z)
=Sρ(z)

Uρ(z)

(b) SIMO controller model

Fig. 3: LFT models

III. EXTENSIONS OF FIR CTC FILTER DESIGN METHODS

We now present extensions to FIR CTC filter design methods
found in the literature.

A. Least-Squares Formulations

Inspired by the error weighting commonly applied in
the augmented plant in the mixed-sensitivity approach [11],
we extend the regularized time-domain least-squares method
from [5] to include separate FIR weighting filters wd(k) and
wc(k) of length Nw for the direct path and the cross paths,
respectively. This yields different problems for each input
channel ρ, namely,

min
cρ

∥∥∥w
ρ

(
dρ − hcρ

)∥∥∥2
2
+ ∥(IT ⊗ b)cρ∥22 (4)

with b corresponding to the convolution matrix for the
regularization filter b and the block diagonal weighting matrix
w

ρ
containing the convolution matrices corresponding to the

weighting filters. E.g., for T = R = R = 2 and ρ = 1:

w
1
=

[
wd 0(Nd+Nw−1)×Nd

0(Nd+Nw−1)×Nd
wc

]
. (5)

The solution to (4) is given by

cρ =
(
hTwT

ρ
w

ρ
h+ IT ⊗

(
bTb

))−1

hTwT
ρ
w

ρ
dρ. (6)

In contrast to [5], a different system of equations (6) needs
to be solved for each input channel ρ now, which slightly
increases the computational complexity. While this change due
to the weightings might appear insignificant, the impact on
the channel separation can be significant (cf. Sec. V). Scalar
weightings, i.e., Nb = 1 as in [3], are included in (4) as a
special case, and then (6) becomes the standard weighted least-
squares solution [13]. The problem (4) with scalar weightings
is equivalent to the personal sound zones filter design problem
in [14] for exactly one receiver in the bright zone and R− 1
receivers in the dark zone.

The frequency-dependent weightings can straightforwardly
be included into the frequency-domain least-squares CTC filter
design problem in its various forms [4], [6], [7]. Due to
the potential real-time capability of these methods, they are
especially attractive for dynamic scenarios, in which the CTC
filters need to be updated multiple times per second.

B. Minimax Formulations

In [3], it is suggested to solve a convex minimax problem
in the time domain to obtain CTC filters in the Atal-Schroeder
structure. Scalar weightings for the errors in the direct path
and cross path are included there. Contrastingly, it is suggested
in [2] to solve a problem that minimizes a maximum frequency-
domain error, to obtain filters for the single-filter structure. This
structure, however, is restricted to symmetrical CTC setups.
Both problems can be conceptually combined to obtain CTC
filters in the Atal-Schroeder structure. This leads to a worst-
case frequency-domain error minimization, similar to the H∞
synthesis cost function (cf. IV-B). With F̄ denoting the M×M
unitary Discrete Fourier Transform (DFT) matrix, a matrix that
extracts a symmetric half of the DFT spectrum from a zero-
padded input signal of length Nin ≤ M is given by

FM×Nin =
[
I⌊M

2 +1⌋ 0M−⌊M
2 −1⌋

]
F̄M

[
INin

0(M−Nin)×Nin

]
,

where ⌊·⌋ is the floor function. This allows to write an extended
frequency-domain minimax problem as follows:

min
cρ

∥∥∥(IR ⊗ FM×(Nd+Nw−1)

)
w

ρ

(
dρ − hcρ

)∥∥∥
∞

subject to
∣∣(IR ⊗ FM×(Nd+Nw−1)

)
cρ
∣∣ ≤ G.

(7)

Here, |·| denotes the elementwise absolute value, and G =[
GT

1 , . . . ,G
T
T

]T ∈ RT⌊M
2 +1⌋ includes the frequency-dependent

gain limits Gt (µ) at frequency index µ for each transmitter t.
The gain limits could be chosen similarly to those resulting
from regularization filters in the least-squares formulation,
where the gain at each frequency is approximately limited
to 1/ (2 |B(µ)|). Defining the gain limit as a hard constraint
increases the computational complexity but also guarantees the
gain limit rather than the ”soft” gain constraint induced by the
regularization in the least-squares formulation.

Without the frequency-domain transform term(
IR ⊗ FM×(Nd+Nw−1)

)
in (7), our formulation becomes a

generalization of the minimax problem in [3]—now with
frequency-dependent weighting filters.

IV. RELATIONS OF CTC FILTER DESIGN METHODS

We now relate inverse filtering-based FIR to optimal control-
based IIR CTC filter design methods.

A. H2 Synthesis and Time-Domain Least-Squares

A common tool for least-squares controller design is the
H2 synthesis [11], [15]. It is based on the solution of two
algebraic Riccati equations. For the MIMO systems above, the
H2 synthesis aims to find a state-space controller K̃(z) that
minimizes

J̃ (2) =
∥∥∥T̃SG̃ (Ω)

∥∥∥2
2
=

1

2π

2π∫
0

tr
{
T̃SG̃ (Ω) T̃H

SG̃
(Ω)
}
dΩ.
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Using the system model in Fig. 1 and neglecting the weighting
W̃(z), it can be shown this is

1

2π

∞∫
−∞

(
R∑

r=1

R∑
ρ=1

∣∣∣∣[HC̃− Ã
]
rρ

∣∣∣∣2+ T∑
t=1

R∑
ρ=1

∣∣∣∣[B̃C̃
]
tρ

∣∣∣∣2
)
dω,

where we discarded the dependency on the normalized angular
frequency 0 ≤ Ω < 2π, defined as Ω = 2πf/fs with sampling
frequency fs, for brevity, and [·]ij denotes the i-th row and
j-th column of a matrix.

For the SIMO case, the H2 synthesis minimizes

J (2)
ρ =

∥∥TSρGρ
(Ω)
∥∥2
2

(8)

=
1

2π

2π∫
0

(
R∑

r=1

∣∣[HCρ −Aρ]r1
∣∣2 + T∑

t=1

∣∣[BCρ]t1
∣∣2) dΩ.

From the second line of (8) it can be seen that J̃ (2) =
∑

ρ J
(2)
ρ .

This implies that the MIMO and SIMO topology yield the same
results for the H2 synthesis, i.e., C̃ =

[
C1, . . . ,CR

]
. Through

the tr
{
(·) (·)H

}
operation each element of the overall TF is

considered in the optimization, even though the output signals
only contain sums. Note that as soon as a weighting function
is introduced that depends on ρ, the equality is violated.

The H2 synthesis minimizes the sum of all energies of
the overall TF from input signal to the error outputs, which
can be expressed equivalently [15] in the time domain as
J (2)
ρ =

∑∞
k=0 t

2
SρGρ

(k) , where tSρGρ(k) is the vector of the
corresponding overall IRs. As the time-domain least-squares
formulation considers just the energies up to k = Nd, or
k=Nd+Nw−1 for the case with error weightings, and up to
k=Nb+Nc−1 for the regularization outputs, its cost functions
converges to the one of the H2 synthesis for Nc → ∞. Hence,
the time-domain least-squares CTC filters approximate those
of the H2 synthesis for sufficiently long filters.

B. H∞ Synthesis and Minimax Optimization

The discrete-time H∞ synthesis [11], [15] minimizes

J̃ (∞) =
∥∥∥T̃SG̃ (Ω)

∥∥∥
∞

= max
Ω

σ
(
T̃SG̃ (Ω)

)
, (9)

where σ (·) denotes the singular values of a matrix. For the
SIMO topology for channel ρ, the H∞ synthesis minimizes

J (∞)
ρ =

∥∥TSρGρ
(Ω)
∥∥
∞ . (10)

As the single singular value of an N × 1 matrix is the square
root of the sum of the squared absolute value entries, the SIMO
cost function is different from MIMO cost function.

The difference between the SIMO and MIMO topologies
can be leveraged as follows: If J (∞)

1 attains its maximum error
at Ω0 and J (∞)

2 attains its larger maximum error at the same
frequency Ω0, the two SIMO solutions would find two different
minimal errors. However, the MIMO formulation would only
minimize one maximum error so that the system for ρ = 1
with the smaller error could have been further improved.
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Fig. 4: Comparison of MIMO and SIMO topology with and
without cross-path error weighting for H∞ synthesis

For a sufficiently large number M of discrete frequency
points, the DFT approximates the discrete-time Fourier trans-
form (DTFT). If a large enough filter length Nc is chosen in this
case, the solution of (7) without gain limitation approximates
the H∞ solution for the SIMO topology if the crossterm can go
to zero, i.e., for a sufficiently long modeling delay. Therefore,
both (7) and (10) minimize the maximum frequency-domain
error if only one nonzero term occurs in TSρGρ (Ω).

The minimax formulation with the explicit gain limit appears
to be more convenient as it requires less manual tuning than
required in adjusting the weighting filters in the H∞ synthesis.

V. EVALUATION

To evaluate our findings, we conducted both simulations and
acoustic measurements.

A. Simulation: H∞ Synthesis for MIMO and SIMO Systems

We simulated CTC setups with two loudspeakers placed at
±45◦ in the horizontal plane for all 96 subjects of the HUTUBS
HRTF database [16]. The measured HRTFs were resampled to
a sampling rate of 32 kHz, and the desired cascade response
was a 4th-order Butterworth bandpass with a passband from
150Hz to 15 kHz. Frequencies below 150Hz are commonly
reproduced monaurally. We applied the H∞ synthesis to both
the MIMO and SIMO topologies for different modeling delays,
adding extra delay to the Butterworth IRs. No regularization
was used. A weighting function was used that attenuates errors
above and below the passband edges of the desired response
by 20 dB and has unit magnitude elsewhere. To demonstrate
the impact of the weighting function, we simulated the SIMO
variant again and increased the error weighting in the passband
of the cross path by 20 dB. Note that this weighting can only
be applied in the SIMO topology. To simplify the comparison,
we evaluated the frequency-averaged channel separations, as
defined in [3], in the frequency range from 300Hz to 14 kHz,
where the desired cascade response is mostly flat.

Fig. 4 depicts the mean channel separation percentiles for
0%, 25%, 50%, 75%, and 100%. The channel separations tend
to increase for the SIMO topology. With the weighting, the
values are further enhanced as reducing the errors in the cross
paths is incentivized. For shorter delays, the inversion becomes
more difficult and hence the performance decreases. In these
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Fig. 5: Measured direct-path and cross-path magnitudes at left
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cases, it might be more likely that J (∞)
1 and J (∞)

2 significantly
differ, which could be exloited in the SIMO topology.

B. Real-World Measurements
We implemented a CTC system and measured the perfor-

mance to evaluate the impact of cross-path error weighting
functions not only on the channel separation but also on
the distortion of the desired direct-path responses. Binaural
room impulse responses (BRIRs) from two loudspeakers
(Neumann KH120A) to a dummy head (Neumann KU100)
were measured. The loudspeakers spanned an angle of about
40◦ in the horizontal plane, and the distance was about 1.2m.
All measurements were conducted in a soundproof booth
(Studiobox Premium) of dimension 1.8m×2.2m×3m with a
reverberation time of about 150ms. The 150ms-long measured
IRs were used to design CTC filters of length Nc = 4096 at a
sampling rate of 48 kHz according to (6). A regularization gain
limit was applied, and the modeling delay was chosen to be
about 6.5ms longer than the delay of first peak in the BRIRs.
The desired response was a 4th-order Butterworth bandpass
filter (150Hz to 23 kHz). The error weighting outside the
passband was −20 dB for the direct path and the cross path.

Fig. 5 shows the measured cascade TF magnitudes at the
left dummy head microphone for different cross-path error
weightings in the passband. For better readability, a one-
third octave band smoothing was applied. Above 400Hz the
differences in the direct paths do not exceed 2 dB while the
crosstalk decreases by up to 20 dB. The magnitude response
dip at about 300Hz is due to a BRIR notch that is difficult
to invert [17]. The equalization becomes 5 dB to 10 dB worse
for increased cross-path error weightings as relatively less
emphasis is put on achieving a good equalization of the direct
path compared to the crosstalk suppression. According to [18],
the minimum audible channel separation is 15 dB to 20 dB.
Hence, the weighting could help to push the channel separation
in a real-world CTC system above this threshold.

VI. SUMMARY

We have analyzed that the regularized time-domain least-
squares CTC FIR filter design method with flat error weighting

is virtually identical to filters resulting from the H2 synthesis
for both SIMO and MIMO topologies if the FIR filters are
sufficiently long. Further, we have shown that a joint filter
optimization for all channels, as pursued by conventional
MIMO approaches, can be improved upon in the H∞ case by
opting for the SIMO topology, which is commonly used in
the FIR CTC filter design methods. The channel separation
can be further increased by amplifying the weighting of the
cross-path error which is explicitly accessible in the SIMO
topology. Inspired by mixed-sensitivity loop shaping, we have
proposed to incorporate frequency-selective weighting filters
into the optimization of FIR CTC filters. Based on simulations
and measurements of a prototype CTC system, we have shown
that this can lead to greater channel separation.
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