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Abstract—In some situations, speech can be a disturbing
source of ambient noise. Active noise control (ANC) systems
have difficulties in dealing with speech due to its non-stationary
nature when the non-causality problem arises in such systems,
which requires the optimal filters to be non-causal. The non-
causality problem is due to the delay incurred by, e.g., digital
processing or acoustic propagation paths. We propose a new
fixed-filter feedforward ANC system, HCMP-ANC, which aims
at attenuating speech in, e.g., office environments. Notably, it com-
prises a non-stationary harmonic chirp model-based prediction of
speech ahead in time, thus overcoming the aforementioned delay.
The results show that HCMP-ANC can outperform conventional
adaptive feedforward ANC, for delays in the order of tens
of samples at a sampling frequency of 8 kHz. By accounting
for speech non-stationarity, HCMP-ANC can attenuate female
speech in a wider frequency range of up to 3 kHz, while the
conventional ANC is limited to 1.5 kHz.

Index Terms—fixed-filter ANC for speech attenuation, causal-
ity, speech prediction, harmonic chirp model, ANC headphones.

I. INTRODUCTION

Active noise control (ANC) technology has shown its effec-
tiveness in attenuating different types of noise in many appli-
cations [1]-[3]. With the modern lifestyle, ANC is becoming
an essential feature in headphones, headsets and small wireless
earbuds with growing interest in both consumer and enterprise
market. Among the different types of noise we deal with in ev-
eryday life, speech can be a very disturbing source of ambient
noise, e.g., in crowded public spaces or open offices, reducing
concentration and productivity. Therefore, it is increasingly
important that ANC headphones also attenuate human voices
effectively. However, speech attenuation by ANC headphones
can be quite limited due to the non-stationarity of speech.

In ANC, an anti-noise signal with the same amplitude but
the opposite phase is generated through a secondary source
(e.g., headphone loudspeaker), cancelling unwanted noise at
the desired cancellation point (e.g. the eardrum). To gener-
ate an anti-noise signal in adaptive ANC systems, adaptive
algorithms such as Filtered-X least mean square (FXLMS)
or Filtered-X Normalized LMS (FXNLMS) are commonly
used [1]-[3]. However, modern ANC headphones are typically
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Fig. 1. Simplified modelling block diagram of FF ANC headphones with the
extra delay D=FDg+ADg—ADp in S(z).

based on either fixed feedforward (FF) or feedback (FB) filter
or a combination of both (hybrid ANC) [4].

Many factors affect ANC performance [1], [2], [4]-[10], one
of those factors being the causality constraint. For FF ANC
headphones, as shown in Fig. 1, the causality constraint is
violated when the propagation delay ADp of the disturbance
between the reference and the error microphone of the primary
path P(z) is less than the electric, FDg, and acoustic, ADg,
propagation delays of the anti-noise signal in the secondary
path S(z), i.e., ADp < EDg+ ADg, with the extra delay
in S(z), D= FEDg+ ADg— ADp [7]. When the causality
constraint is violated, a prediction problem arises to com-
pensate for the delay D [S5]. The ANC causality has been
investigated before [5]-[10]. However, the causality of ANC
systems cancelling speech was not considered.

Due to the non-stationarity of speech, it requires the ap-
plication of dedicated adaptive prediction schemes for higher
prediction performance when compensating for D [11], [12].
A common approach for speech prediction is linear prediction
(LP) [11]. The idea of LP is that a speech sample can
be approximated as a linear combination of past samples.
However, only the most recent 10-12 speech samples (at a
sampling frequency, f; = 8 kHz) and those at the pitch
period of speech, T', contribute to the prediction performance
[11]. This corresponds to short-term LP (STP) and long-term
LP (LTP), the joint modeling of which, namely SLTPj, was
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proposed in [12]. In this regard, other speech samples than
the ones corresponding to STP and LTP might be seen as
suboptimal, i.e., increasing computational cost and having no
or even negative contribution to prediction performance [11].
When the causality constraint is violated, conventional ANC
algorithms, i.e., FXLMS or FXNLMS, act as an adaptive LP
to find a causal filter [7], [13]. Depending on P(z) and S(z),
it might have a filter order which is not optimal for speech
prediction. Therefore, such ANC systems may have limited
performance for speech reduction when compensating for D.

Apart from LP, sinusoidal (harmonic) modelling has been
successfully applied to a broad range of speech processing
problems [14]-[16]. In [17] it was shown that with uni-
form sampling, the harmonic model (HM) can be uniquely
expressed using LP. In these models, speech is considered
stationary during short analysis time intervals. However, it
is well known that this assumption of stationarity does not
hold [18], [19], which limits the accuracy of the models
and increases prediction error. To account for speech non-
stationarity, the harmonic-chirp model (HCM) was introduced,
where a chirp parameter allows the frequency of the harmonics
to change linearly within each segment [18], [19]. Moreover,
higher speech harmonics are subject to quick changes, i.e.,
have higher temporal modulations [20]. In this regard, HCM
should increase the prediction frequency range towards higher
frequencies, i.e., better predict higher harmonics of speech.
This advantage of HCM over LP and HM makes it a good
candidate for addressing the prediction problem in ANC since
the need for prediction is greater at higher frequencies as a
constant time delay constitutes a larger phase difference at a
higher frequency. Moreover, the human ear is most sensitive
to sounds around 2—4 kHz [20].

In this paper, we propose a new fixed-filter FF ANC
for headphones application, HCMP-ANC, comprising a non-
stationary HCM-based prediction (HCMP) of speech ahead
in time, thus overcoming the delay which creates the non-
causality problem. Since HCM models non-stationary speech
better, it is expected that HCMP-ANC will improve speech at-
tenuation compared to conventional adaptive ANC, especially
at higher frequencies. In this study, we consider the voiced
part of speech since it is the main constituent of speech and
normally has higher power than unvoiced speech [19]. Also,
the voiced speech has much higher predictability than the
unvoiced—stochastic part, which is almost unpredictable [11].

The paper is organised as follows. First, HCMP-ANC with
residual error analysis is described in Section II. Section III
presents the signal model and the proposed HCMP. Speech
attenuation performance of the proposed HCMP-ANC com-
pared to the conventional FXNLMS ANC and to SLTPj-ANC
are presented in Section IV. Section V concludes the paper.

II. PROPOSED FIXED-FILTER ANC SYSTEM

The proposed HCMP-ANC system is depicted in Fig. 2.
In most commercially available FF ANC headphones, at least
one microphone in each ear cup, a reference microphone, is
used to measure the incoming noise x(n) [4]. In the FF ANC

z(n - d(n
& Pn(2) e = cancellation
point
£(n+D)
HCMP P (2)
W(z2)=
2P W) Sm (2)

Fig. 2. Simplified diagram of the proposed fixed-filter FF ANC, HCMP-ANC.
Adaptive HCMP compensates for the delay D=EDg+ADgs—ADp; (\)m
denotes the minimum-phase part of P(z) and S(z).

system, the goal is to match the internal disturbance signal
d(n) = x(n) * p(n) as accurately as possible in amplitude
and inverted phase. Since P(z) and S(z) include acoustic
propagation paths and S(z) also has the latency of an ANC
chip (i.e., the processing unit), they are non-minimum phase.
Therefore, the causal FF fixed-filter W (z) can be calculated
by considering the minimum-phase part of P(z) and S(z).
The delay part 2~ is compensated by the proposed HCMP
which predicts z(n) D samples ahead in time, resulting in
both signals d(n) and Z};, (n) being aligned in time at the
cancellation point, with the residual error

E(2)=[X(2)P(2) — X(2)2" "W (2)S(2)]
=[X(2)P(z) — X(Z)Z+DPm(z)z_(EDS+ADS)] (1)
=[X(2) — X(2)]P(2).

As can be seen from (1), the performance of the proposed
HCMP-ANC system depends on the accuracy (in terms of
waveform approximation) of the predicted signal X(z) com-
pared to the original signal X(z). Without compensation for
2~P, the ANC performance will be significantly decreased
[5]-[8]. The residual error, in this case, can be expressed as

Ep(2)=[P(2)-W(2)S(2)| X (2)=[1—2"P]P(2) X (2). (2)

Depending on the ANC headphones design, the causality
constraint might be violated due to a geometry problem. This
is related to the small size of the ear cups (earbuds), which
results in a small ADp compared to ADg combined with the
processing (electric) latency E Dg. In addition, the amount of
EDg depends on the ANC chip and its algorithmic design
[8]-[10]. The delay D might also be affected by the direction
of the incoming noise [6] and improper headphone fit on the
ear. The work here is focused on addressing the prediction
problem. Therefore, other challenges inherent in fixed-filter
ANC design, e.g., the changes in P(z) and S(z) due to
the physiology of the ear and their influence on the ANC
performance, are not considered and are beyond the scope of
the paper. This allows for breaking down the complexity of
an ANC system and focusing on the non-causality problem.

III. PROPOSED HARMONIC CHIRP MODEL PREDICTION

A single-pitch real-valued speech signal is modelled by
z(n) = s(n) + u(n), where s(n) is the harmonic part of the
signal, i.e., voiced speech, and u(n) is the stochastic part, i.e.,
unvoiced speech, background noise, etc.
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The real HCM for a voiced speech signal is given by [19]

L
sucm(n) = Z Agede), €)]
I=—L
where L is the number of harmonics, A; is a real, non-zero
amplitude of the {’th harmonic, with Ay =0, and ¢;(n) is the
corresponding instantaneous phase. In HCM, the instantaneous
frequency w; is not stationary but changes linearly within a
segment, i.e., w;(n) = l(wp+ kn). The instantaneous phase
@i(n) is then found by integrating w; as [19]:

oi(n) =1 <w0n + ;kn2> + ¢, 4

where wg = 27 fo/ f; is the normalized fundamental frequency,
k is the normalized fundamental chirp rate and ¢; € [0, 27| is
the initial phase of the I’th harmonic. The model in (3) can
then be rewritten as [19]:

L
SHCM(n) — Z alejl(u.zon-‘rk/2n2)7 5)
I=—L

where a; = A;e/? is the complex amplitude of the I’th
harmonic. A special case of HCM for k=0 is the traditional
HM, where w; is stationary within a segment, i.e., w;(n) =lwy,
which gives [19]:

L
sum(n) = Z agetwon (6)
I=—L
As was demonstrated in [17], HM in (6) can be uniquely
expressed as a linear combination of its previous 2L samples:

2L
sum(n) = — Y _ aisam(n — i), )
=1

2L
with >~ a; exp(—jw;i) =0 relating {w; } to the LP coefficients,

{ai},z vx(f)here ao=1, a; =asr,_;. The relation in (7) holds for
a stationary signal, i.e., a number of sinusoids [17]. Since wyq
of speech is a non-linear parameter, it makes HM a non-linear
problem for speech [21] and could lead to higher estimation
and prediction errors. With application to speech and assuming
its stationarity during short time intervals, (7) shows that
using LP for speech prediction is more practical, and it does
not make sense to do prediction with HM. Moreover, with
some LP schemes, the estimation of wy can be avoided [11].
However, speech is a non-stationary signal, even within short
time intervals [18], [19], which is not taken into account by the
LP model. Therefore, it makes sense to apply HCM for speech
prediction. To the best of our knowledge, an LP equivalent of
HCM, which could take into account speech non-stationarity,
is not known.

In this paper, we propose HCM-based prediction (HCMP),
which is done by extending the model in (5) in discrete-time,
so predicted D samples of voiced speech ahead in time are:

L
dnemp(n+ D) = Z alejl(ao(n+D)+E/2(n+D)2)7 ®
I=—L

and similar for the HM-based prediction (HMP), when k=0in
(8), where () denotes estimates of the corresponding model
parameters that minimize the mean square error

E{lear(n)|”} = E{|z(n) — 3(n)[*}. ©)

Given that &y and % are non-linear parameters they can
be found using the non-linear least-squares (NLS) method
minimizing (9), as it has been proved to be the most accurate
and robust [21], [22]. A Kalman filter, similar to [23], [24], can
also be used to update &y and k. When estimating &y and k
there is a trade-off between segment length and accuracy of the
estimates [22]. A typical segment of 20-30 ms is used in this
case. However, considering temporal modulations of speech
[20], the optimal segment length when estimating &; may
be shorter to_correctly capture speech formants. Therefore,
once Wy and k are estimated, the amplitudes &; can be found
minimizing (9) by, e.g., either the least squares method with
a recursive algorithm (RLS) or with LMS algorithm [13].

IV. SIMULATION RESULTS
A. Simulation conditions

For the following simulations, P(z) and S(z) were mea-
sured on a Jabra headphone prototype in an anechoic chamber
with directional noise on a head and torso simulator, with
S(z) excluding the ANC processing unit. Depending on the
factors discussed in Section II, the ANC system might become
non-causal, with the amount of D depending on those factors.
Therefore, the ANC performance of the proposed system will
be investigated as a function of the delay D in S(z). In this
regard, for the simulations, ADp =0, thereby P(z)=Pn(2),
while S(2)=S5,,(2)z~" and S(z)=S(z) for FXNLMS ANC.

As an ambient noise input to the system, ie., z(n) in
Fig. 2, we used 27 and 23 seconds of concatenated clean
speech signals sampled at 8§ kHz from the TIMIT [25] and the
NOIZEUS [26] databases. The amount of female and male
speech is equal in the selected material. The simulation pa-
rameters listed below were found empirically. They determine
the best possible performance of the systems under the given
conditions. For HCMP, &g and k were estimated using the NLS
estimator from [21] with the segment length of 161 samples
with symmetric time indices [21]. The maximum model order
L for estimation is 15. For prediction, L was set to have all
harmonics up to f;/2. The amplitudes @; were estimated with
the least squares method over a window of length 63 and 119
for female and male speech, respectively. The smaller optimal
window length for female speech can be explained by higher
temporal modulations, i.e., faster changes in the amplitude of
the female speech harmonics [20]. For SLTPj and HMP, T
and (o were estimated with the pitch estimator from [21] with
the same settings as above. SLTPj was implemented using an
adaptive NLMS algorithm as in [27] with the order of 10 and
5 for STP and LTP parts, respectively. The order of FXNLMS
ANC is set to 72, which also covers female and male pitch
periods for the used test signals. The order of W(z) is 72.
For all the systems regularisation dnyms = 1073, step-size u
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Fig. 3. Illustration of a non-stationary voiced segment of z(n)—female speech and its prediction £(n+ D), D=5 samples. Time-domain and its spectra.
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Fig. 4. PSD of z(n)—female (a), male (b) voiced speech and prediction error
for &(n+D), D=5 samples. Averaged over all female and male signals.

is 0.15 for FXNLMS ANC and 0.16 for SLTPj. The estima-
tion and prediction were done on a sample-by-sample basis.
While the entire speech signals were used for estimation and
prediction, only voiced samples were considered to evaluate
performance. For this purpose, the voiced-unvoiced detection
[28] was used with the same settings as above. To measure
average ANC speech attenuation performance, the attenuation
metric A, in dB, was used. The higher the attenuation, the
better the ANC performance. The metric was calculated on
voiced speech samples over a sliding window of 25 ms as:

S _pd(n+i)?

A(n)=101lo
( ) 210 Zf:,IC(n“FZ'P

(10)

B. Results

1) Simulation of P(z) and S(z) as pure delays, i.e.,
{Pn(2),Sm(z),W(2z)} = 1. As the work here is focused
on addressing the non-causality problem in ANC, first, we
evaluate and compare the performance on the entire speech
frequency range without the bias of P(z) and S(z) from a
specific headphone design. The attenuation performance in this
case will be equivalent to the prediction performance [7].

In Fig. 3 we show an example of a non-stationary segment
of female speech, where HCMP-ANC generally has better
performance and a quite noticeable performance improvement
at higher frequencies. According to the power spectral density
(PSD) plot in Fig. 4, the proposed system for female speech
has a lower prediction error in a wide frequency range,
especially at higher frequencies and up to 3 kHz, therefore,
predicting higher frequencies better than other ANC systems.

[dB]

Phase, [deg] Magn.,

200
Frequency, [Hz|

1 1
400 1000 2000 4000

Fig. 5. Measured primary path P(z), secondary path S(z) and their
minimum-phase parts calculated with the real cepstrum method [29].

This might be explained by the ability of HCMP-ANC to ac-
count for speech non-stationarity, which can also be seen when
comparing to HMP-ANC and shows its importance for speech.
In contrast, FXNLMS ANC has quite a poor performance at
frequencies above 1.5 kHz and generally higher prediction
error, as seen in Figs. 3 and 4(a). Compared to HCMP-ANC,
SLTPj-ANC has a higher error and still limited performance
at higher frequencies for female speech, as seen in Fig. 4(a).
However, it outperforms the proposed system for male speech,
providing a lower prediction error, as shown in Fig. 4(b).

2) Measured P(z) and S(z) are shown in Fig. 5. The
average speech attenuation performance when compensating
for the delay D is shown in Fig. 6. When the system is causal,
ie., D =0, it allows for an average speech attenuation of
about 30 dB, which may not be achievable in practice due
to other factors affecting ANC performance. However, with
a delay of 1 sample, as seen in Fig. 6(c), the performance
drops significantly, and without compensating for D, reaching
even negative attenuation, meaning noise amplification. As
seen in Fig. 6 (a), the proposed HCMP-ANC provides the
highest average female speech attenuation for D > 1 among
all considered ANC systems outperforming the conventional
FXNLMS ANC and SLTPj-ANC.

Male speech attenuation is shown in Fig. 6(b). As in the case
of female speech, HCMP-ANC outperforms FXNLMS ANC.
However, SLTPj-ANC has a better performance than the pro-
posed system. This might be explained by the fact that for male
speech more model parameters, i.e., complex amplitudes &,
should be estimated, which can make HCMP-ANC and HMP-
ANC more susceptible to estimation and prediction errors
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Fig. 6. ANC performance with measured P(z) and S(z): mean attenuation
of female (a) and male (b) voiced speech as a function of D. Comparison
of the proposed HCMP-ANC with the conventional FXNLMS ANC, other
prediction-based fixed-filter ANC and (c) fixed-filter ANC without predictor.

than LP-based systems. This is because the lower fundamental
frequency in male speech leads to more harmonics with their
finer spacing [20]. Moreover, male speech produces higher
spectral (frequency) modulations, varying over harmonics [20].
Therefore, a better solution would be a combination of HCMP-
ANC for female speech and SLTPj-ANC for male speech. The
decision, e.g., can be made based on the estimated fundamental
frequency, which is anyway required for both systems.

V. CONCLUSION

We proposed a new fixed-filter FF ANC system for head-
phone applications, HCMP-ANC, which aims at attenuating
speech and comprises a non-stationary harmonic chirp model-
based prediction to overcome the delay creating the non-
causality problem. Simulations show that HCMP-ANC is par-
ticularly good for female speech. It outperforms conventional
adaptive FF FXNLMS ANC for female and male speech as
well as linear prediction-based fixed-filter FF ANC system,
SLTPj-ANC, for female speech at a wide range of the delay
D, ie., 1 < D <20 samples at f; = 8 kHz. By accounting
for speech non-stationarity, HCMP-ANC can attenuate female
speech in a wider frequency range of up to 3 kHz, while
FXNLMS ANC is limited to 1.5 kHz. However, for male
speech, SLTPj-ANC appears to be a better solution. Therefore,
a combination of the two methods would likely work best.
Future work should focus on conducting subjective tests.
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