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Abstract—While wearing earbuds, the wearers often perceive
their own voice as boomy. This so-called occlusion effect (OE)
poses a major problem. Various countermeasures based on active
noise cancellation (ANC) have been proposed. In a previous
publication, we investigated the use of a vibration sensor in
a time-invariant feedforward ANC scheme to reduce the OE.
However, a potential drawback is the leakage of sensor noise into
the ear canal. In this publication, we employ an improved filter
design method which allows us to constrain the noise leakage. We
show empirically that constraining the noise leakage also results in
limited OE reduction performance. This poses a trade-off similar
to what is known for feedback systems as the waterbed effect.
Furthermore, we show that the trade-off is rooted in the fact
that we can only use causal filters in practice. Lastly, we give
an example on how the improved filter design method, further
extended by an outer microphone as reference sensor, can be
of use in an application-oriented filter design. The analysis is
done via simulations based on measurements with a hardware
prototype.

Index Terms—Hearables, occlusion effect reduction, active noise
cancellation, feedforward filter design, waterbed effect

I. INTRODUCTION

Earbuds are becoming ever more ubiquitous, however, their
wearers often perceive their own voice as well as other
body-conducted sounds, such as footsteps, as boomy. This
phenomenon, called the occlusion effect (OE), is caused by
two mechanisms: Firstly, air-conducted speech components are
attenuated by the earbud, mostly affecting higher frequencies.
Secondly, the predominantly low frequency body-conducted
speech components are amplified as the vibrating ear canal
walls can better excite the air volume in the occluded ear canal
[1, p. 26]. Active noise cancellation (ANC) techniques can be
used to reduce the OE, which is promising, as many modern
earbuds are capable of ANC. Different approaches, mostly
focusing on counteracting the amplification of low frequency
components, have been described in the literature. They mainly
employ feedback (FB) control using a microphone facing into
the ear canal, e.g. [1]–[5]. However, feedforward (FF) control
using an outward-facing microphone has also been proposed
[6], [7]. We recently investigated a novel FF system using a
vibration sensor [8], an approach that has so far only been
proposed in patents [9], [10]. The vibration sensor is capable
of directly sensing body-conducted speech components. Thus,
it can be used for generating a cancellation signal to counteract
the amplification of low frequency components in the ear canal.

Additionally, vibration sensors are typically more robust against
wind noise, but also air-conducted sound, which offers clear
advantages compared to microphone-based systems.

Among other limitations, e.g. due to the danger of instability,
the performance of FB-based control systems is limited by
the waterbed effect [11, p. 164]. This effect causes a desired
amount of disturbance rejection in one frequency region to be
accompanied by an equal amount of amplification in another
region, thus, posing a fundamental design trade-off. However,
similar effects have also been described for FF systems, i.e. in
the absence of FB loops, e.g. [12], [13].

We already noted in [8] that the proposed system tends
to leak undesired signal components into the ear canal above
1 kHz. There, we regularized the FF filter for higher frequencies
to limit this leakage. In this publication, we show that there is
a fundamental design trade-off between noise leakage and OE
reduction performance inherent to the system, which is similar
to the waterbed effect. We do so using simulations based on
acoustic measurements with a hardware prototype of an in-ear
ANC headphone. Afterwards, we conduct an analysis of the
trade-off, utilizing an improved filter design which enables us
to constrain the noise leakage in a targeted manner without the
need for manually adjusting regularization filters. Furthermore,
the outer microphone is used as an additional reference sensor,
mainly allowing us to also counteract the attenuation of high
frequency components. We use a signal-based filter design as
the underlying system possibly depends on the physiology of
the wearer as well as wearing conditions, and its description
is thus non-trivial. While the sensor in [8] was attached to the
skin of the user, we extend our research to an earbud-mounted
vibration sensor, as it suits itself better for practical application.
This poses potentially more problems with feedback from the
speaker to the vibration sensor, which however are out of scope
for this paper.

II. THEORY

A. System Model

Fig. 1 shows the system model as well as a sketch of
the underlying physical components. The earbud contains
a loudspeaker, a vibration sensor, a microphone facing into
the ear canal, subsequently called inner microphone, as well
as a microphone facing outwards, subsequently called outer
microphone. All components are connected to a digital signal
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Fig. 1: System model with underlying physical components.

processing (DSP) platform. In the following, let k be the
discrete time index, while t is the continuous time. The
vibration sensor signal v(k) captures the digitized earbud
vibration in one axis. The orientation of this axis relative to
the earbud is indicated in Fig. 2. The outer microphone signal
o(k) captures the digitized sound pressure outside the ear canal.
Both signals, v(k) and o(k), are filtered by a digital FF filter,
which we describe by their impulse responses (IRs) wv(k) and
wo(k), respectively. Furthermore, the inner microphone signal
i(k) captures the digitized sound pressure inside the ear canal,
given as the sum

i(k) = ŷ(k) + d(k), (1)

where ŷ(k) corresponds to the signal component caused by the
speaker, and d(k) corresponds to all remaining components.
I.e., d(k) is the signal before and i(k) the signal after acoustic
addition of the speaker signal. In turn, the speaker signal at
the inner microphone is given by

ŷ(k) = −s(k) ∗ [wv(k) ∗ v(k) + wo(k) ∗ o(k)] , (2)

where s(k) is the IR of the secondary path, which describes
the transmission from the digital input of the speaker to the
digital output of the inner microphone, as indicated in Fig. 1.

B. Metrics

We quantify how the system changes signal power in the
ear canal using the power gain (PG)

G(Ω) =
√

Φi(Ω) /Φd(Ω), (3)

where Φi(Ω) and Φd(Ω) are the long-term average power
spectra (PS) of the inner microphone signal d(k) before and
i(k) after addition of the speaker signal, respectively, and
Ω = 2πf/fs is the angular frequency relative to sampling
rate fs, depending on frequency f . Furthermore, we quantify
the OE before addition of the speaker signal as OEd(Ω) =√
Φd(Ω)/Φoc(Ω), as well as the OE after addition of the

speaker signal as OEi(Ω) =
√
Φi(Ω)/Φoc(Ω). Here, Φoc(Ω)

is the long-term average PS of the calibrated outer microphone
signal oc(k). We obtain the latter as oc(k) = γ o(k), where
γ is the gain corresponding to the dB-level average of
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Fig. 2: Bose QC20 earbud with attached vibration sensor.

Φd(Ω)/Φo(Ω) for a diffuse field recording, in the frequency
range from 50Hz to 1 kHz. Now, if the proposed system
reverses the change in signal power in the ear canal caused
by the occlusion, i.e. G(Ω) ≈ 1/OEd(Ω), this indicates good
performance. Thus, we will use 1/OEd(Ω) as a target for the
PG later on when we evaluate performance.

C. Filter Design

Now, we want to find filter IRs wv(k) and wo(k) so the OE
is reduced, i.e. i(k) ≈ iopen(k), where iopen(k) is the signal as
it would be recorded in the unoccluded ear canal. Using (1),
we derive the desired speaker signal as

i(k) ≈ iopen(k) ⇒ ŷ(k) ≈ iopen(k)− d(k) = y(k), (4)

where we define y(k) as the target for the speaker signal ŷ(k) to
achieve the outlined goal. In the following, we choose different
design goals depending on the experiment. Thus, we state the
solution depending on the generalized target y(k). Writing the
filter IRs as column vectors wv,wo ∈ RL of length L, we find
the filters that minimize the squared error between the speaker
signal ŷ(k) and the target signal y(k), including regularization,
by minimizing the cost

c(w) = −2wTϕ+wT ϕw (5)

with respect to the stacked filter vector w =
[
wT

v wT
o

]T ∈
R2L. Here, ϕ ∈ R2L is the stacked cross-correlation vector
and ϕ ∈ R2L×2L is the stacked correlation matrix, given as

ϕ =

[
ϕṽy

ϕõy

]
and ϕ =

[
ϕ

ṽṽ
ϕ

ṽõ

ϕT
ṽõ

ϕ
õõ

]
+

[
ϕ

rvrv
0

0 ϕ
roro

]
. (6)

In turn, ϕṽy,ϕõy ∈ RL are the cross-correlation vectors of
the signals ṽ(k) and õ(k) with the target y(k), respectively,
and ϕ

ṽṽ
,ϕ

õõ
∈ RL×L are the auto-correlation matrices and

ϕ
ṽõ

∈ RL×L is the cross-correlation matrix between ṽ(k)
and õ(k). Here, ṽ(k) and õ(k) are the reference signals
which are pre-filtered with the sign-inverted secondary path
IR in a filtered-X scheme, i.e. ṽ(k) = −s(k) ∗ v(k) and
õ(k) = −s(k) ∗ o(k). Lastly, ϕ

rvrv
,ϕ

roro
∈ RL×L are the

auto-correlation matrices of the regularization filters rv(k) and
ro(k), respectively. Note that (5) and (6) constitute a standard
multichannel inverse filtering problem similar to [14] but using
a signal-based formulation.

To tackle the noise leakage, we constrain the filters during
design, a concept which has in general been described for
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control applications in e.g. [15]. As the leakage of incoherent
noise through the FF filters leads to an increased PG, we attempt
to constrain the PG, as defined in (3), during optimization. As
noise leakage is, in practice, mainly a problem for the vibration
sensor signal, we assume wo(k) = 0 for the computation of
the constraint, thus focusing on the output v(k) ∗wv(k) of the
vibration sensor FF filter. During optimization, we approximate
the PG as ratio of the discrete-time Fourier transforms (DTFTs)
of the inner microphone signals after and before addition of
the speaker output, yielding the approximated power gain

Gv(Ω) = |D(Ω) + Ṽ (Ω)q(Ω)Twv| / |D(Ω)|, (7)

where q(Ω) =
[
1 e−jΩ e−j2Ω . . . e−j(L−1)Ω

]T ∈ CL is
the fourier transform vector, with the product q(Ω)Twv yielding
the DTFT of wv at Ω, and D(Ω) and Ṽ (Ω) are DTFTs of
the inner microphone signal before cancellation d(k) and the
vibration sensor signal pre-filtered with the secondary path
ṽ(k), respectively. Note that the absolute value of I(Ω) and
Ṽ (Ω) are smoothed in 1/3 octave bands. During optimization,
we constrain Gv(Ω) using the user-selectable upper bound
Gv(Ω) for a set O of normalized angular frequencies, i.e.

Gv(Ω) ≤ Gv(Ω) for all Ω ∈ O. (8)

This allows us to limit the noise leakage in a frequency-
dependent way, without the need for manually adjusting the
regularization filter rv(k).

In total, this leads to the convex optimization problem

min
w

−2wTϕ+wT ϕw

s.t. Gv(Ω) ≤ Gv(Ω) for all Ω ∈ O.
(9)

III. EXPERIMENTAL SETUP

We used a pair of modified Bose QC20 earbuds to obtain data
for our experiments. Fig. 2 shows the right modified earbud.
The internal ANC processing was disabled, and we directly
accessed the microphones and speakers. A Knowles BU-23842
accelerometer was attached to each earbud using hot glue. All
sensors and speakers were connected to a DSP platform based
on an Analog Devices ADAU 1787 as well as an ADAU 1777
audio codec, which were in turn connected to a computer via
sound card. We repeated the following measurements for six
subjects, five male and one female, and for two refits of the
earbuds per subject. We recorded all sensor signals for the
left and right earbud while the subjects read a segment of the
rainbow passage as described in [16, p. 124-139]. The speech
recordings had an average length of 35 s. Furthermore, we
identified the secondary path IRs s(k) for each fit using a 10 s
long exponential sweep. All recordings were done at sampling
rate fs = 48 kHz. Combining data from all recordings and left
and right side, this yields a set of 24 samples in total.

If not stated otherwise, we used the following practices
throughout the paper and the experiments: We always consid-
ered all 24 data samples. Furthermore, the default length for the
designed FF filters wv(k) and wo(k) was L = 1024 taps, which
corresponds to a time interval of around 21ms. We solved (9)
using a set O of angular frequency points, corresponding to
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Fig. 3: Signal characteristics of vibration sensor setup.

uniformly spaced frequencies from 20Hz on with a spacing
of fs/L/5, corresponding to roughly 9.4Hz for the default
filter length, up to and including fs/2. The dB-levels of all
shown spectral measures were smoothed in 1/3 octave bands
for the sake of clear presentation. If we show averaged data,
we indicate the data on which the averages are based on with
thinner lines of similar color for completeness.

IV. RESULTS

A. Signal-to-Noise Ratio of Vibration Sensor Setup

First, we illustrate the signal-to-noise ratio (SNR) of our
vibration sensor setup for the case of speech excitation. To
characterize the noise, we recorded the vibration sensor signals
four times for 40 s in an acoustically insulated room, while the
earbuds where not worn. Fig. 3 shows the dB-level average of
the PS over both sides and over all noise ( ) recordings and
over all speech ( ) recordings from Sec. III. We observe
that the SNR of the vibration sensor setup is around zero above
2 kHz, and thus, the vibration sensor signal is unlikely to be
useful for counteracting the OE in this frequency region. Note,
that the peak around f = 9kHz reflects the sensor resonance.

B. Description of Trade-Off

Now, we show that a trade-off between cancellation per-
formance and noise leakage is inherent to the system. We
designed FF filters wv(k) and simulated the resulting inner
microphone signal i(k) using the data described in Sec. III.
To assess the trade-off independent of system variations, e.g.
due to inter-person variability, we designed 24 separate filters,
i.e. one filter for each pair of recording and secondary path,
and simulated i(k) for each filter using the recording and path
it was designed on. We chose i(k) ≈ 0 as our design goal,
i.e. maximum possible attenuation, to rule out that undesired
amplification is caused by the system trying to boost high
frequency components, which would be necessary to fully
counteract the OE. The chosen goal results in the target signal
being y(k) = −d(k), i.e. d(k) acts as a disturbance to be
cancelled. Moreover, as we focus on the properties of the
vibration sensor signal, we set the outer microphone signal
to o(k) = 0 in the design and disregarded the filter output
wo(k) ∗ o(k). We did not employ regularization as this acts as
an additional, soft constraint in the filter design, and we want
to focus on the effect of (8) here.

To outline the noise leakage problem, we first designed filters
without constraint. Fig. 4 shows the resulting dB-level averages
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Fig. 4: Performance of unconstrained filters.
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Fig. 5: Influence of constraint Gv(Ω) on performance.

of the PGs over all recordings ( ). Furthermore, we indicate
the dB-level average of 1/OEd(Ω) over all recordings ( ),
which acts as a target for the PG as outlined in Sec. II-B.
The averages indicate that we can counteract a significant
portion of the OE-induced overshoot above 80Hz. However,
we also observe a considerable amplification below 80Hz and a
rather strong amplification of up to around 30 dB above 800Hz.
Given the low SNR above 2 kHz, as outlined in Sec. IV-A,
this results in a lot of noise being leaked into the ear canal.
This is also clearly audible in the inner microphone signals
i(k) that result from the simulation.

Next, we designed filters with different constraints Gv(Ω)
to limit the noise leakage. We chose Gv(Ω) ranging from
0.33 dB, i.e. the constraint is very restrictive, to 10 dB, i.e.
the constraint is not very restrictive. Fig. 5 shows the dB-
level averages of the resulting PGs over all recordings for
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Fig. 6: Maximum attenuation, i.e. minf G(Ω), over maximum
noise leakage, i.e. maxf G(Ω), for different constraints Gv(Ω).
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Fig. 7: Influence of causality on performance.

the different constraints. The unconstrained case is indicated
again for reference. We observe that decreasing the upper
bound Gv(Ω) decreases the noise leakage above 800Hz as
intended. Note that we only constrained the PG as defined
in (3) indirectly, i.e. using (7). Thus, the observed PGs can
slightly exceed the constraint. However, there is still a clear
correspondence between decreasing the constraint Gv(Ω) and
a decrease in the observed PG visible. We see that a decrease
in noise leakage above 800Hz also results in a decrease in
attenuation below 800Hz, e.g. for Gv(Ω) = 1dB ( ), we
observe almost no visible noise leakage anymore, but the
maximum attenuation also drops. We conclude that there is a
trade-off between cancellation performance and noise leakage.
This relationship is indicated in Fig. 5 by the yellow arrows.
This trade-off is similar to the so-called waterbed effect present
in feedback systems [11, p. 164]

We further visualize the relation between maximum atten-
uation and maximum noise leakage in Fig. 6. To do so, we
computed the maximum attenuation, i.e. minf G(Ω), and the
maximum noise leakage, i.e. maxf G(Ω), for the 1/3 octave
band smoothed PGs from this experiment. For the computation
of the minima and maxima, we did not consider frequencies
below 20Hz as the PG was not constrained here during design,
but also not above 20 kHz as the PG tends to contain artifacts
from the smoothing there. We indicate the centroid of all points
corresponding to a particular upper bound Gv(Ω) with a thicker
point. The centroids clearly confirm the described trade-off.

C. Influence of Causality Constraint on Trade-Off

While only causal filters can be implemented in practice, we
now relax the causality constraint to evaluate its influence on the
trade-off. To do so, we repeated the simulations from Sec. IV-B,
however, we also considered mixed-causality filters whose IRs
wv(k) can have non-zero coefficients for −1024 ≤ k ≤ 1023,
in contrast to 0 ≤ k ≤ 1023 for causal filters. Also in contrast
to Sec. IV-B, we focused only on filters designed without a
constraint and with the constraint Gv(Ω) = 1dB. In total,
the combination of causality and PG constraints yields four
combinations of design constraints.

Fig. 7 shows the dB-level averages of the resulting PGs over
all recordings for the four combinations. For the causal filters
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Fig. 8: Effect of system on OE.

( , ), we observe the same trade-off as earlier. However,
for the mixed-causality filters ( , ), we observe less
noise leakage for the unconstrained filters ( ), as well as
similar performance for constrained and unconstrained filters.
The latter means that the severity of the trade-off is reduced
significantly. Thus, the trade-off seems to be rooted in the fact
that applicable filters need to be causal.

D. Practical Example

Lastly, we want to give a more application-oriented example
of how the design method described in Sec. II-C could be
applied. To fully counteract the OE, we now chose i(k) ≈
oc(k−24) as design goal, resulting in y(k) = oc(k−24)−d(k).
We delay oc(k) for the target to avoid problems because
of the non-minimum phase nature of the secondary path,
which implicitly needs to be inverted in the design [17].
Thus, we delayed oc(k) by around 0.5ms in accordance with
[18]. We now also included the outer microphone signal
o(k) as additional reference signal. We chose the constraint
Gv(Ω) = 3.3 dB. We chose the regularization filters rv(k) and
ro(k) in a way that low gain is incentivized for wv(k) above
8 kHz and for wo(k) above 12 kHz.

Fig. 8 shows the dB-level average of the OE over all
recordings before ( ) and after ( ) addition of the speaker
signal. To disentangle the contributions of both reference
sensors, we also simulated i(k) by only applying the vibration
sensor’s FF filters wv(k) output. Note, that no separate design
of the filters wv(k) was done for this case. ( ) shows
the resulting OE. We observe that the OE is on average
reduced by the proposed system, indicated by ( ) being
closer to 0 dB, i.e. the unoccluded case. Furthermore, the
constraint acts as intended and limits the leakage of noise
which is indicated by ( ) only slightly exceeding ( )
for frequencies below 80Hz and above 800Hz. Note here
that the constraint enables us to relatively evenly distribute
the noise leakage among the spectrum, which should be
perceptually advantageous, without the need for manually
adjusting regularization filters. Moreover, the outer microphone
not only enables counteracting the attenuation of high frequency
components, it also contributes somewhat to reducing the
overshoot of low frequency components.

V. CONCLUSION

In this publication, we showed that a trade-off between
achievable cancellation performance and noise leakage exists in
a proposed vibration sensor-based FF OE reduction system. We
analyzed the trade-off, and showed that it implies restrictions
in the filter design similar to the waterbed effect known mainly
from FB control. Further analysis showed that the trade-off is
rooted in the causality constraint of the system. We employed
a constraint in the filter design to analyze the problem, but
also gave an example of how the resulting filter design method
could be beneficial in practice.
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