
Beyond Clean Phase: Using Silence-Generating
Phase for DNN-Based Speech Enhancement

Lars Thieling and Peter Jax
Institute of Communication Systems (IKS)

RWTH Aachen University, Germany
{thieling,jax}@iks.rwth-aachen.de

Abstract—Speech enhancement algorithms usually operate in
the short-time Fourier transform (STFT) domain and only enhance
the magnitude spectrum, while adopting the noisy phase for
synthesis. This is because the phase has often been considered
unimportant. However, recent findings have proven otherwise,
leading to an improved enhancement by considering the phase
either implicitly or explicitly. In this paper, we propose a phase-
aware extension of our recently published two-stage speech
enhancement approach. It comprises, among other improvements,
an additional explicit phase estimation stage whose structure
is inspired by the fundamental ideas of our work on phase
reconstruction. Unlike most phase-aware approaches, we do not
estimate the clean phase but propose a novel combined consistent-
inconsistent phase (CIP). It corresponds to a silence-generating
phase for the noise-dominated time-frequency (TF) parts and
thus allows noise reduction without modifying the magnitude
spectrum at all. We show that this new CIP can provide a
significant performance improvement compared to the clean phase.
Experimental results confirm the effectiveness of our proposed
extensions, ultimately leading to improved speech quality (PESQ,
DNSMOS) and speech distortion (segmental SNR).

Index Terms—Speech enhancement, phase estimation, signal
reconstruction, neural network

I. INTRODUCTION

In many applications, such as speech communication or
automatic speech recognition, speech signals are often degraded
by background noise, resulting in reduced perceived quality
and intelligibility. This problem is usually solved by using
signal processing or deep learning-based speech enhancement
algorithms that aim to extract the target speech from the single-
channel noisy mixture. These algorithms typically operate in
the short-time Fourier transform (STFT) domain by applying
the discrete Fourier transform (DFT) on windowed segments
of the input signal. In this STFT domain, they, e.g., apply
direct spectral mapping or time-frequency (TF) masking [1]–[3].
Conventionally, the enhancement mainly focused on improving
the magnitude spectrum because the phase was generally
considered hard to estimate [4] and less important compared
to the magnitude [5], [6]. However, since the distorted phase is
reused for signal reconstruction, the overall quality is limited.

With the increase in computational power of speech commu-
nication devices and the recent advances in deep learning, there
has been an increasing number of studies that also consider
the phase for speech enhancement (see [7]). For example,
some studies apply phase reconstruction after enhancing the
magnitude spectrum [8]. More recent deep learning-based

approaches estimate the phase implicitly by using a loss in
the complex spectrum or waveform domain [1], [2], [9]. Some
studies also add an explicit phase loss term or use an explicit
subnetwork for phase estimation [4], [10]. In this paper, we
propose a novel modular phase-aware deep speech enhancement
approach consisting of three stages: A mask estimation stage
generates a real-valued mask that is used as prior information
in the subsequent magnitude and phase estimation stages.
Specifically, we propose a phase-aware extension of our recently
published two-stage speech enhancement approach [3] by
exploiting key ideas of our deep neural network (DNN)-based
phase reconstruction [11].

II. CONTRIBUTIONS AND RELATION TO PREVIOUS WORK

We propose four major modifications to our previous work:
1) preparation of the system for real-time application, 2) an
updated loss function for the masking model, and 3) a new
phase estimation stage that estimates 4) a novel combined
consistent-inconsistent phase (CIP).

For our original speech enhancement approach, no real-
time requirements have been imposed, so it can only be used
for offline applications. However, for applications such as
telecommunications, real-time capability is crucial. Therefore,
we apply causal convolutions instead of standard convolutions
in our neural networks and limit the lookahead in the magnitude
and phase estimation stages to two frames, corresponding to
2 · 5ms= 10ms (modification 1).

In our previous work, we used the mean squared error (MSE)
as loss for the mask estimation model. However, the MSE is
only indirectly related to the achievable performance since it
ignores the influence of the mask on the magnitude spectrum.
As a remedy, we update the loss by a magnitude spectrum
approximation (MSA) that optimizes the achieved magnitude
spectrum after application of the mask (modification 2).

So far, our system only enhanced the magnitude while
adopting the distorted phase for synthesis, which limits the
achievable performance. For this reason, we propose a novel
phase estimation stage (modification 3). As mentioned earlier,
there exist approaches that consider phase estimation either
implicitly or explicitly. However, most of these approaches
consider instantaneous phase differences in each TF entry
separately. They neglect the continuity of neighboring entries,
although, as we will see in this work, the phase differences
of overlapping frames play a particularly crucial role (see
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Sec. III). Hence, similar to [11], in this work we first estimate
the phase differences of adjacent time frames and frequency
bins, and then apply a causal phase reconstruction method
adapted for speech enhancement which combines the estimated
phase differences.

Most speech enhancement approaches try to directly estimate
the clean spectrum, along with the clean phase. However, in
TF regions without speech, estimating the clean phase is not
meaningful. In particular, if the associated enhanced magnitude
spectrum in this region is not accurately estimated, i.e., is non-
zero, this may leave residual noise. We therefore propose to
estimate a novel combined consistent-inconsistent phase (CIP)
instead (modification 4). While it corresponds to the clean
phase in speech-dominated regions, it uses a silence-generating
phase for the noise-dominated parts (see Sec. III).

III. SILENCE-GENERATING PHASE

A common task in speech processing is to reconstruct a
signal solely from a given magnitude spectrogram. The Griffin-
Lim algorithm [12] is frequently used for this purpose. It aims
to find the closest consistent STFT spectrogram using iteratively
alternating STFT and inverse STFT (ISTFT) operations, where
the term “consistent spectrogram” refers to a spectrogram that
can be obtained as the STFT spectrogram of a time-domain
signal. Le Roux et al. [13], [14] have modified this algorithm
to produce maximally inconsistent spectrograms that can be
resynthesized through ISTFT as silence, assuming that the
same window is used for analysis and synthesis. As already
mentioned by Le Roux [14], the problem of finding a maximally
inconsistent spectrogram becomes trivial for the case of a
rectangular window with an overlap of, e.g., 50% or 75%: it
suffices to add π to the phase of every other frame. As will
be shown below, this trivial solution can also be applied for
window functions w(k) with perfect reconstruction, i.e., for
those satisfying the Princen-Bradley criterion [15]

w2
(
k + L

2

)
+ w2(k) = 1 for k = 0, 1, . . . , L2 − 1 (1)

when using a frame length L and frame shift R such that

L/R ∈
{
4κ |κ ∈ N+

}
. (2)

To show this, we first consider the perfect cancellation
criterion for the weighted overlap-add synthesis method [12]

x′(k) =

∑∞
λ=−∞ w(k − λR) ỹw(λ, k)∑∞

λ=−∞ w2(k − λR)

!
= 0, (3)

where λ is the frame index, ỹw(λ, k) = IDFT(Yw(λ, µ) ·
ejπλ) = w(k − λR) y(k) (−1)λ with Yw(λ, µ) being the STFT
of a given time signal y(k), and w(k) denotes the analy-
sis/synthesis window. Thus, we obtain perfect cancellation
independent of y(k) if

λ0+
L
R−1∑

λ=λ0

w2(k − λR) (−1)λ !
= 0 (4)

holds for the overlap region of each successive L/R frames,
i.e., k = k0, k0 + 1, . . . , k0 +R− 1 with k0 = λ0R+ L−R.
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ŝ(k)

ψIF
Y

ψGD
Y

ψ̂IF
CIP

ψ̂GD
CIP

ϕ̂CIP
Phase Differences

Estimation
Phase Recon-

struction Method

∆t (·)

∆f (·)
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Fig. 1. Block diagram of the proposed speech enhancement system. The
frame index λ and frequency bin index µ of all quantities in the TF domain
are omitted for simplicity.

Assuming that (1) and (2) are satisfied, we can rewrite the left
part of (4) as

λ0+
L
2R−1∑

λ=λ0

w2(k − λR)

(
(−1)λ − (−1)λ+

L
2R

)
+ (−1)λ+

L
2R , (5)

which is zero since (−1)λ+
L
2R = (−1)λ.

Thus, if L and R satisfy (2) and the window function
satisfies (1), we can define a silence-generating phase for a
given consistent spectrogram X(λ, µ) = STFT(x(k)) as

ϕ̃X(λ, µ) := ϕX(λ, µ) + πλ, (6)

where ϕX(λ, µ) =∠X(λ, µ) is the phase spectrum of X .

IV. PROPOSED SYSTEM ARCHITECTURE

Our proposed speech enhancement system is depicted in
Fig. 1. It aims to extract the target speech s(k) from the
noisy mixture y(k) = s(k)+n(k) using three estimation stages.
Similar to our previous work [3], a spectral mask Ĝ is estimated
initially, which is then used to estimate the denoised magnitude
spectrum |Ŝ| in another stage. Moreover, we propose a novel
phase estimation stage that receives the noisy phase ϕY = ∠Y
in addition to |Y | and Ĝ. Inspired by our work on phase
reconstruction [11], this stage consists of a network estimating
phase differences followed by a phase reconstruction method.

Each stage contains an individually trained neural network
whose general architecture is shown in Table I. It is similar to
that in our previous work [3] but uses causal convolutions.
The CConv2D layers consist of a 2D causal convolution
followed by a batch normalization and an individual activation
function, which depends on the considered network. For a
given CConv2D(F, 3× 3, 2) layer, F specifies the number of
filters, 3× 3 is the kernel size, and 2 corresponds to the stride
along the feature axis. Each ResBlock(F, 3× 3) layer consists
of a skip connection and two stacked CConv2D(F, 3× 3, 1)
layers, the second of which always uses a linear activation.

A. Mask Estimation Stage

Similar to our previous work, the network used to estimate
the mask from the noisy magnitude has an encoder-decoder
architecture according to Table I with Cin =1 input channel,
Cout = 1 output channel, Finit = F/4, F = 64, and B = 8.
This results in a height of Hres =H/4 in the residual blocks.
Except for the linear unit in the second CConv2D of each
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TABLE I
COMMON NETWORK ARCHITECTURE WHERE THE DOWN- AND

UPSAMPLING LAYERS (HIGHLIGHTED IN GRAY) ARE ONLY USED IN THE
MASK ESTIMATION. CCONV2D CAN BE “STANDARD” OR “GATED”.

Layer Activation size
Input H × None × Cin

CConv2D(Finit, 9× 9, 1) H × None × Finit
CConv2D(F/2, 3× 3, 2) H × None × F/4

CConv2D(F, 3× 3, 2) H/2× None × F/2

B×
{ ResBlock(F, 3× 3) Hres × None × F...

...
ResBlock(F, 3× 3) Hres × None × F

Upsampling (2, 1) H/2× None × F/2
CConv2D(F/2, 3× 3, 1) H/2× None × F/2

Upsampling (2, 1) H × None × F/2
CConv2D(F/4, 3× 3, 1) H × None × F/4
CConv2D(Cout, 9× 9, 1) H × None × Cout

ResBlock layer and the sigmoid function in the output layer,
the exponential linear unit (ELU) is adopted as activation
function for all CConv2D layers.

Instead of using the MSE on the masks, we propose to use
the magnitude spectrum approximation (MSA), i.e.,

LMSA =
1

KQ

K−1∑
λ=0

Q−1∑
µ=0

|Ĝ(λ, µ) · |Y (λ, µ)| − |S(λ, µ)||2 (7)

as loss, where K is the number of frames and Q = N/2 + 1
with N being the DFT size. This way, the mask is optimized
with respect to its effect on |Ŝ′| =̂ Ĝ · |Y |, which establishes a
more direct relation to its noise reduction performance.

B. Magnitude Estimation Stage
As proposed in [3], Ĝ is not used directly for noise reduction,

but as prior information in the magnitude estimation model
that delivers the enhanced magnitude spectrum |Ŝ|. That is, Ĝ
provides a rough estimate of where speech and noise dominate,
and the magnitude estimation model can process these regions
differently and focus on local structures in the spectrum. To
this end, the model uses the network architecture described in
Table I with Finit =F = 64, B=2, and omitting the down- and
upsampling layers, i.e., Hres =H . Furthermore, all standard
causal convolutions are replaced by gated causal convolutions.
The activation functions are chosen as in the mask estimation
model, only the sigmoid function in the output layer is replaced
by a linear one. While we still have Cout =1 output channel, the
mask is used as an additional input channel to the network, i.e.,
Cin =2. The MSE between |Ŝ| and |S| is used as loss function
and two additional input frames are adopted as lookahead.

C. Phase Estimation Stage
In our previous work [3], only the magnitude has been

enhanced and the noisy phase has been used for synthesis,
which inevitably leads to a suboptimal solution. In this paper,
we propose a novel phase estimation stage using the general
system architecture from our work on phase reconstruction [11].
That is, we first estimate phase differences and then apply a
suitable phase reconstruction method for combination. However,
instead of estimating the clean phase ϕS , we propose a new
combined consistent-inconsistent phase (CIP)

ϕCIP(λ, µ) :=∠
(
G(λ, µ) ejϕS(λ,µ)+(1−G(λ, µ)) ejϕ̃Y(λ,µ)

)
, (8)

where G =̂ |S|/|Y | is the ideal spectral magnitude mask and
ϕ̃Y is the silence-generating phase for the noisy spectrum Y
according to (6). Hence, ϕCIP corresponds to the clean phase
in speech-dominated parts and the silence-generating phase in
noise-dominated parts. Thus, noise reduction can be achieved
by solely replacing the noisy phase by our proposed ϕCIP,
which, as shown in Sec. V-A, leads to similar or even better
results than combining the clean magnitude |S| with the noisy
phase spectrum ϕY .

While only the magnitude spectrum of a time signal was
available in our work on phase reconstruction [11], here in
speech enhancement we can exploit the noisy phase ϕY as
another source of information. Especially for high SNRs, this
can be very helpful because in this case the noisy phase
corresponds approximately to the clean one. It is therefore
reasonable to consider the noisy phase for enhancement. In
this work, we propose to use it in two ways. First, it is used
in order to extract the input features for the phase differences
estimation network. Second, it is used as a kind of supporting
estimate in the phase reconstruction method.

1) Phase Differences Estimation: The phase differences
along time and frequency, namely the instantaneous frequency
(IF) and group delay (GD), are estimated by a neural network
based upon the IF and GD of the noisy spectrum Y , i.e.,
ψIF
Y and ψGD

Y . More precisely, as proposed in [11], the shift
corrected and wrapped IFs and GDs are always employed as
input and output features.1 Besides ψIF

Y and ψGD
Y , the estimated

mask Ĝ is used as a third input to our phase differences
estimation network, i.e., Cin = 3, and the Cout = 2 desired
phase differences ψIF

CIP and ψGD
CIP are output. Except for the

number of input and output channels, the remaining neural
network hyperparameters and the used lookahead are identical
to those in the magnitude estimation from Sec. IV-B. In TF
regions where the corresponding magnitude spectrum used for
synthesis is close to zero, the phase is of little relevance. To
account for this during training, we add a weighting to the
regularized cosine loss function [11], i.e.,

Lγ
wreg =

1

KQ

K−1∑
λ=0

Q−1∑
µ=0

(|S(λ, µ)|+γ) · dreg

(
∆ψ̂(λ, µ)

)
, (9)

where dreg(·) denotes the element-wise distance function of
the regularized cosine loss Lreg proposed in [11] and γ ∈ R is
a parameter to adjust the estimation behavior of the networks
towards consistent or inconsistent phase. For our experiments,
we chose γ=0.01 as it leads to a good compromise between
consistent and inconsistent phase estimates.

2) Phase Reconstruction Method: In order to obtain a
consistent phase spectrum from the estimated phase differences,
an appropriate phase reconstruction method is required. For
example, one could apply our proposed magnitude-weighted
average (MWA) algorithm [11] using |Y | for weighting. That
is, the phase at a given TF entry is the weighted average
of three estimates calculated from the previously estimated

1Note that in case of IF, the shift correction is also often referred to as
baseband phase difference transformation as introduced in [16].
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phase elements in its causal vicinity, i.e., it depends only on
entries from the current and past frames. However, due to the
recursive structure, error propagation may occur. Fortunately,
we can counteract this by exploiting the noisy phase, e.g.,
by using it as a fourth estimate for our averaging procedure,
i.e., φ4(λ, µ) = ϕY (λ, µ) and α4(λ, µ) = |Y (λ, µ)| according
to [11]. This adapted procedure is referred to as supported
magnitude-weighted average (SMWA) in the following.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The noisy speech data sets were created using clean speech
from the VCTK database [17]. Specifically, the speakers were
carefully divided into non-overlapping training, validation,
and test subsets. Considering these speaker subsets, the train-
ing/validation set was created by mixing 1000/100 randomly
chosen audio files with the 38 different noise recordings from
the DEMAND [18] and QUT [19] databases using SNRs of
0, 5, and 10 dB. For mixing, the SNR is only calculated in
sections where speech is present. To allow for an unbiased
evaluation, different non-overlapping excerpts from the noise
recordings were used for both sets. The test set was created
similarly, using 100 randomly selected clean speech files, four
unseen noise recordings (car, crossroads, office, and pub noise)
from the ETSI database [20], and SNRs of 0, 5, and 10 dB. In
total, this resulted in 112.4 h of data in the training, 10.6 h in
the validation, and 1.2 h in the test set.

All audio files were resampled to fs = 16 kHz. For the
STFT and the ISTFT, an L=320 samples square-root Hann
window with 75% overlap, i.e., R=80 samples window shift,
and N =320 frequency bins was used such that all conditions
for the silence-generating phase (see Sec. III) were satisfied.
For the encoder-decoder architecture comprising the down- and
upsampling layers shown in Table I, divisibility of the input
dimension H by 4 is required. Therefore, the feature axes of
all inputs to the neural networks were padded by reflection
to H =164. During training, the number of input frames was
fixed to 320 to get mini-batches of constant dimension.

All models were trained at least 10 epochs on the shuffled
training data, using an Adam optimizer with β1 = 0.9, β2 =
0.999, a learning rate of 0.001, and a batch size of 8. The
models were evaluated on the validation set in the middle and
at the end of each epoch so that the best iteration could be
selected based on the minimum validation loss after training.

We employed segmental SNR (SNRseg in dB) [21], wideband
PESQ [22], STOI [23], and DNSMOS [24] as our quality
measures. While the first three measures are intrusive, i.e., the
clean signal is available for comparison, DNSMOS is non-
intrusive, using the noisy signal for evaluation only.

A. Theoretically Achievable Performance

In order to demonstrate the efficiency of the proposed CIP,
we first examine the theoretically achievable scores, i.e., without
considering any kind of estimation. The scores calculated on the
test set using different combinations of magnitude and phase
spectra are reported in Table II. If the magnitude spectrum
would be perfectly estimated, i.e., |Ŝ|= |S|, the clean phase ϕS

TABLE II
THEORETICALLY ACHIEVABLE TEST SCORES AVERAGED OVER ALL SNR

AND NOISE CONDITIONS WHEN USING DIFFERENT COMBINATIONS OF
MAGNITUDE AND PHASE SPECTRA FOR ISTFT.

Magn. Phase PESQ STOI SNRseg
DNSMOS

OVRL SIG BAK

|S|
ϕS 4.64 1.00 − 3.18 3.49 4.00
ϕCIP 4.27 0.89 14.32 3.08 3.38 3.99
ϕY 3.97 0.92 8.38 3.07 3.39 3.96

|Y |
ϕS 2.06 0.76 −4.68 2.35 3.20 2.53
ϕCIP 4.16 0.93 11.94 3.02 3.35 3.92
ϕY 1.85 0.67 −7.93 2.08 2.81 2.25

naturally achieves the best results. Using ϕY or our oracle ϕCIP
according to (8), the scores degraded only slightly. Assuming
that the magnitude in noise reduction is usually not perfectly
estimated, these differences are likely negligible.

When the noisy magnitude spectrum |Y | is used for recon-
struction, significantly worse results are obtained for ϕS and
ϕY . The results for ϕCIP, however, remain very similar to the
clean magnitude case. Due to its silence-generating behavior
in the noise-dominated parts, our ϕCIP clearly outperforms the
clean ϕS . Furthermore, it can be seen that using |Y | with ϕCIP
even better results compared to |S| with ϕY can be achieved
for the intrusive measures. Contrary to the common assumption
that enhancing the magnitude is more important than the phase,
this result demonstrates the strong potential of phase processing
in speech enhancement.

B. Overall System Evaluation

The actual achieved test scores after training the neural
networks are shown in Fig. 2. In order to evaluate the
influence of the different stages, we compared our proposed
extended speech enhancement approach (ETSSE), including
the phase estimation stage, with the approach (TSSE) that
does not enhance the phase but uses the noisy phase ϕY for
reconstruction similar to [3]. For ETSSE, we used two different
phase reconstruction methods, namely MWA from [11] and
SMWA from Sec. IV-C. While TSSEMagn also uses |Ŝ| from the
magnitude estimation stage, TSSEMask uses Ĝ from the mask
estimation stage for magnitude enhancement, i.e., |Ŝ′| =̂ Ĝ · |Y |.
In order to have a state-of-the-art reference algorithm, we
reimplemented the implicitly phase-aware fully convolutional
recurrent network (FCRN) based on [2] and trained it using a
gradient norm clipping of 0.1.

On average, the best results are obtained by ETSSESMWA,
i.e., including the phase estimation stage using the proposed
SMWA. Both ETSSEMWA and ETSSESMWA improve the ob-
tained DNSMOSbak scores compared to TSSEMagn, which
is likely due to the estimation of CIP that corresponds to
the silence-generating phase for noise-dominated parts. The
spectral components in these TF regions, erroneously left in
the magnitude estimation, are consequently attenuated by the
phase enhancement. For SNRseg, a significant degradation can
be observed using MWA for reconstruction, i.e., ETSSEMWA,
which can be explained by the phase error propagation in
the recursive structure of MWA. Using the noisy phase as
prior information in the proposed SMWA, i.e., ETSSESMWA,
counteracts this problem and leads to improved SNRseg values
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Fig. 2. Achieved results for the different noise signals (car, crossroads, office, pub) from the test set: ETSSESMWA ( ; proposed), ETSSEMWA ( ; proposed),
TSSEMagn ( ; similar to [3]), TSSEMask ( ; similar to [3]), FCRN ( ; based on [2]), Noisy ( ). Outliers are not shown for visual clarity.

compared to TSSEMagn. Beyond that, ETSSESMWA can also
improve the PESQ and DNSMOSovrl scores compared to
TSSEMagn, while achieving similar STOI values. Except for
PESQ and DNSMOSbak, TSSEMagn achieves better results than
TSSEMask. This is similar to the findings in our previous work,
but the difference between both is slightly smaller this time,
likely due to the new MSA loss function in the masking
model, which considers the influence of the estimated mask
on the magnitude. Except for SNRseg, all TSSE and ETSSE
approaches achieve better results than FCRN on average.
Exemplary audio samples are available online2.

VI. CONCLUSIONS

In this paper, we presented a phase-aware extension of our
recently published two-stage speech enhancement approach.
Particularly, we proposed an additional phase estimation stage
whose basic structure originates from our work on phase
reconstruction. That is, we first estimate phase differences
and then use a phase reconstruction method for combination.
For both steps, we have provided suitable modifications for use
in speech enhancement. In particular, we proposed to estimate
a novel combined consistent-inconsistent phase (CIP), which
enables noise reduction by solely modifying the phase. We
showed that CIP can lead to results even beyond those obtained
with the clean phase when the noisy magnitude spectrum is
used for reconstruction. Furthermore, we demonstrated that our
proposed phase-aware extension further improved the overall
achieved results.
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