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Abstract—Thanks to spatial information contained in reverber-
ated signals, multichannel speech enhancement (SE) algorithms
are able to outperform single channel systems. Reverberated
signals are often generated from simulations of room impulse
responses (RIRs). However, the influence of such methods on SE
quality has not been investigated so far. In this paper, we propose
a dataset for binaural SE, composed of real recordings, measured
and simulated RIRs for the same audio scenes. Measurements
are realized with and without a dummy head. This dataset is
used to estimate the relevance of evaluating SE algorithms on
data generated from RIRs. Results show that the head shadow
effect must be taken into account and that using simulated RIRs
can lead to underestimate or overestimate SE quality depending
on the spatial settings.

Index Terms—multichannel speech enhancement, dataset,
room impulse responses,

I. INTRODUCTION

Compared to single channel SE systems, multichannel sys-
tems have shown to improve performances [1], [2]. Indeed,
single channel systems can reduce efficiently the noise level
but often introduce some distortions on speech signal. Multi-
channel systems are able to overcome this limitation, thanks
to spatial information contained in the reverberated mixture
signals.

Recently, deep neural network (DNN)-based solutions have
become very popular in different audio related tasks, due to
the important improvement they enable. Such solutions need
to be trained on a large amount of data. In addition, the
training set has to cover a large variety of cases to ensure
good performances during the evaluation. For those reasons,
DNN-based SE systems are often trained and evaluated on
simulated signals where the reverberation is obtained from
basic RIR simulators based on image source method (ISM) [3].
This approach allows for quickly generating data for a large
diversity of rooms and spatial scenarios. However, it can rely
on a poor physical modeling that might affect the reliability
of the SE evaluation.

This work was made with the support of the French National Research
Agency, in the framework of the project DiSCogs “Distant speech communi-
cation with heterogeneous unconstrained microphone arrays” (ANR-17-CE23-
0026-01). Experiments presented in this paper were partially carried out using
the Grid5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000).

Other approaches have been proposed improve the physical
behavior of the ISM while remaining very flexible [4]–[6].
Another approach consists in measuring RIRs. This solution
allows for capturing the whole complexity of room effect.
However, collecting a large amount of data that includes an
adequate diversity is time expensive. Moreover, the method
used to measure RIRs may introduce some artifacts in the
estimation. Finally, direct recordings of mixture, along with
speech and noise signals, allow providing more reliable data
but is even more time expensive and less flexible.

Among dataset available for multichannel SE tasks, some
include recordings of real noise signals along with non-
reverberant speech signals (WHAM!) [7] or with simulated
speech signals (WHAMR!) [8]. The dataset of the clarity
challenge [9] is simulated using binaural RIRs obtained with a
hybrid simulator based on ISM/ray tracing technique [4] along
with a dataset of head-related transfer functions to model the
head effect.

To our knowledge, the influence of the method used to
generate evaluation data has not been studied yet, and no
dataset is available for this purpose. In this paper, we propose
an open-source dataset that allows for studying the suitability
of using synthetic reverberated signals to evaluate binaural
SE algorithms. The dataset is built using the three differ-
ent approaches described above for same spatial settings. It
includes recordings of separated speech, noise and mixture
signals along with measured and simulated RIR.

The dataset is described in section II. SE systems chosen
to evaluate the approaches used to generate reverberated data,
are detailed in section III. Finally, results are presented and
discussed in section IV.

II. BINAUREC DATASET

BinauRec1 is a parallel dataset that represents the same
audio scenes using 3 different methods: signals used for eval-
uation are either directly recorded, convoluted with measured
RIRs or convoluted with simulated RIRs.

Signals and RIRs measurements are performed using a
dummy head. The measurements are repeated without the head
in order to study the head shadow effect on SE performances.

1BinauRec dataset is available at https://zenodo.org/record/7256984
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A. Clean speech and noise signals

Clean speech samples are taken from LibriSpeech [10]. Two
different types of noise are used as interference, the first one
is every day life noise downloaded from Freesound [11] and
the second one is speech-shaped noise. BinauRec is a test set,
composed of 1800 audio clips with an average duration of
9.43 s. For each audio clip, clean speech is associated to both
types of noise, which yields a total duration of 9.43 hours. For
each audio scene, speech and noise are recorded separately as
well as the noisy mixture.

B. Room, sources and receivers

The room has rectangular shape with the following dimen-
sions: a length of 6.62 m, a width of 2.57 m and a height
of 2.60 m. The reverberation time over 60 dB is measured
to 0.20 s. The dummy head (GRAS 45BB KEMAR Head &
Torso) is located at 2.27 m from the wall along the length axis
and in the middle of room along the width axis. Loudspeakers
(Klein & Hummel O 110) and the ears of the dummy head are
set at 1.48 m from the floor. Audio signals are recorded using
the portable hearing laboratory (PHL) [12] along with behind-
the-ear (BTE) hearing aids shells. Each BTE, that includes two
omnidirectional microphones, is positioned on each ear of the
dummy head.

C. Input SIR and spatial scenarios

BinauRec is built from 6 spatial scenarios. Each scenario
consists in one speech source and one noise source playing
on separated loudspeakers. The loudspeakers are positioned
at a distance of 1 m from the dummy head, either in front
of the head or at a ±45 or ±90 degree, as represented in
Figure 1. A relative calibration is performed using a pseudo-
random noise signal with a Gaussian distribution, to ensure
that all the loudspeakers deliver the same acoustic level above
the dummy head. At this specific point, the level of speech
signal is set to 70 dB SPL, while the level of the noise signal is
adjusted to obtain the following signal to noise ratios (SNRs):
−5, 0 and 5 dB. A set of recordings is realized without the
dummy head, with BTE remaining at the exact same position
as when the head was present, for a SNR of 0 dB.

Fig. 1. Spatial scenarios of BinauRec dataset.

D. RIR measure and simulation

RIRs from loudspeakers to BTE microphones are estimated
using synchronized swept-sine method [13], in both condition
with and without the dummy head. Simulated RIRs are ob-
tained from Python toolbox Pyroomacoustics [14], using the

parameters described in section II-B. The option based on
hybrid ISM/ray tracing is not used, except in subsection IV-B.

III. EXPERIMENTAL SETUP

A. Algorithms

Tango is a distributed multichannel SE solution designed
for spatially unconstrained microphone arrays [15]. Here, each
BTE is considered as a node with 2 microphones. Tango is
based on 2 filtering steps: in the first step, only mixture signals
from the local device are processed while the second step
exploits filtered signals from the other devices as well. In each
step a time-frequency masks associated to the speech signal
is estimated by a DNN, the resulting estimation is then used
to compute a speech distortion weighted multichannel Wiener
filter (SDW-MWF), that is finally applied to input mixtures.
In the current study, we use a CNN and the filter is based on
generalized eigenvalue decomposition (GEVD) [16], similarly
as in Delebecque et al. [17].

In addition to Tango, we evaluate the different datasets on
FaSNet [18], that is another state-of-art solution for spatially
unconstrained microphone arrays, to investigate the relevance
of using recorded signals or RIRs for SE algorithm evaluation.
FaSNet is a two stage DNN based multichannel filtering
approach. In the first stage all the channels are compared to a
reference channel while in the second stage the beamformer
coefficients are estimated and applied to all the channels.

Tango and FaSNet DNNs are both trained using the syn-
thetic dataset described in Furnon et al. [15]. RIRs are
simulated using Pyroomacoustics with the ray tracing option
disabled. The dimensions of rooms are randomly selected
between 3 and 8 m for the length, between 3 and 5 m for the
width and between 2.5 and 3 m for the height. In the same
way, the reverberation times of rooms are chosen between
0.15 and 0.4 s. One speech source, one noise source and
16 microphones divided into 4 nodes are placed randomly
in the room, with the only constraint that they all should
be distant of at least 50 cm from each other and from the
walls. Tango outputs one signal per hearing side whereas for
FaSNet algorithm, binaural signals are obtained by applying
the algorithm twice, first using the front left channel as the
algorithm reference and then with front right channel.

B. Metrics

The performance of these algorithms is estimated using
source to interferences ratio (SIR) and source to artifacts ratio
(SAR) metrics [19], to account for noise reduction and artifact
introduction, along with the input SIR to represent the balance
between speech and noise in the input mixture. The reference
signals used to compute the metrics are the reverberated speech
and noise signals, and we use the implementation provided by
Scheibler [20].

IV. RESULTS AND DISCUSSION

In order to determinate the suitability of using synthetic data
to evaluate SE algorithms, we investigate for the differences
in the performances obtained using the different approaches.
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As our RIR simulator do not account for the head, we expect
to observe some variations between measured and simulated
cases. The Figure 2 compares the performances of both
algorithms obtained on recorded signals, on signals convoluted
with measured RIRs and with simulated RIRs.

Fig. 2. Mean SE performances obtained for both ears and for all scenarios,
on recorded signals, on signals convoluted with measured RIRs and on signals
convoluted with simulated RIRs. Signals and RIR measurements are realized
with the dummy head.

For FaSNet, comparison between those 3 approaches shows
no significant differences. In the case of Tango, we observe
some small variations (a lower SIR value on simulated RIRs
and a higher SAR value on recorded signals). This might
lead to conclude that using measured or simulated RIRs do
not change the performances compared to what we obtain
using recorded signals. However, those results do not allow to
highlight the variations across each side of the head or across
each spatial scenarios.

A. Head shadow effect

scenario D

scenario E

Fig. 3. Binaural metrics for FaSNet and Tango algorithms obtained on
recorded signals with and without the dummy head for 2 spatial scenarios.
Plain bars and hatched bars represent respectively the metric values obtained
at left and right ear.

Figure 3 compares the binaural SE performances obtained
on recorded signals with and without the dummy head for 2

spatial scenarios. As expected, adding the dummy head tends
to decrease the input SIR at the ear that is the closest to the
noise source for both scenarios. In the case of the scenario
E, adding the head causes an increase in input SIR at the ear
located at the opposite side as well. Those variations are due
to the head shadow effect. For each hearing side, the head
masks the sound source located behind. The analysis of the
output metrics shows that, for FaSNet, the observed variation
in the input SIR is correlated with a significant variation in
both SIR and SAR metrics. This effect is not observed in
the case of Tango algorithm. FaSNet is based on a reference
channel that must be chosen by the user. In the case where
the reference signal has a poor quality, e.g. a low input SIR,
the initial noise reduction step will produce a poor quality
signal and the algorithm will achieve poor SE performances.
Tango performs regardless the reference channel thanks to its
distributed structure and the fact that the SDW-MWF is based
on GEVD. The results of this section suggest that, for some
spatial scenarios, the head shadow effect causes significant
variations in binaural SE performances and hence, should be
taken into account when evaluating SE in binaural setups.

B. Influence of synthetic data

The current section aims to study the influence of using
synthetic data instead of real data to evaluate SE algorithms.
Since the simulated RIRs do not account for the dummy head,
we compare the performances obtained using simulated RIRs,
generated with and without the ray tracing option enabled,
with the ones obtained using recorded signals and measured
RIRs without the dummy head. The figure 4 presents the
results.

scenario D

scenario E

Fig. 4. Binaural metrics for FaSNet and Tango algorithms obtained without
the dummy head for 2 spatial scenarios. Plain bars and hatched bars represent
respectively the metric values obtained at left and right ear. RT denotes the
usage of ray tracing option of the RIRs simulator.
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The first interesting point to notice is that, using simulated
RIRs, the input SIR may vary significantly from the values
obtained from recorded signals and measured RIRs. This is
the case, for example, for the scenario D but the same effect
is observed for scenarios A, C and F as well. For all scenarios,
values of input SIR obtained with measured RIRs are closer
to the one obtained on recorded signals, compared to the
ones from the simulated RIR. As observed in section IV-A,
variations of input SIR are correlated with the final SE
performances for SIR and SAR metrics. In the case of scenario
D, using simulated RIRs degrades the performances for both
algorithms. Note that in the case of scenario A, simulation
gives a higher input SIR along with an improvement in SE
performances. For all spatial scenarios, input SIR values and
SE performances obtained with the ray tracing option enabled,
do not differ from the ones obtained using the classic RIRs
simulator based on ISM. Therefore, results obtained from ray
tracing simulations will not be presented in the remainder of
the paper.

The current experiment shows that, using simulated RIRs
may lead to underestimate or overestimate binaural metrics
of a given SE algorithm, depending on the spatial settings. If
that is possible, using measured RIRs gives, in most cases,
performances that are closer to the one obtained on real data.

C. Correction of the input SIR

In this section, we want to determine if the variations in SE
performances observed during previous experiments are only
due to input SIR variations or if there is some other effects that
are independent to input SIR. To achieve this goal, we propose
to correct the input SIR of signals obtained from measured
and simulated RIR, before to applying SE algorithms and
comparing performances. This correction is made by adjusting
the gain of reverberated speech and noise signals to get, for
each audio scene, the same input SIR value as the recorded
one. It is important to note that, for a given spatial scenario,
the correction gain varies for each signal, which means that
the correction is signal dependent and can not be achieved by
a simple calibration using one gain per loudspeaker. Figure 5
presents the results.

For FaSNet, once the input SIR values are close for all
approaches, the performances obtained from measured and
simulated RIRs do not differ from the ones obtained on
recorded signals. This means that the variations observed
without correction for the SAR (see scenario D in Figure 4),
are explained by input SIR variations.

In the case of Tango algorithm, Figure 5 shows that using
signals from simulated RIRs instead of real signals degrade
SE quality by introducing some distortions which is indicated
by lower SAR values. This effect is significant for scenarios
B, D and E where the noise source is located close to
the walls. In these cases, Tango algorithm exploits some
information that are contained in recorded signals but missing
in signals obtained from simulated RIRs. The origin of this
effect could lie in disparities between the frequency content
of recorded and simulated signals, that might be caused by

scenario D

scenario E

Fig. 5. Binaural metrics for FaSNet and Tango algorithms obtained without
the dummy head and with input SIR correction for 2 spatial scenarios. Plain
bars and hatched bars represent respectively the metric values obtained at left
and right ear.

steps that are poorly or not modeled in the simulation, like
the directivity patterns of loudspeakers or microphones, wave
reflection against the walls or frequency bandwidth of the
microphones.

Those results show, that the variations in input SIR between
real and simulated data are responsible for variations in
final SE performances. However, for some specific spatial
settings, algorithms may exploit information that are missing
in simulated data. Once again, evaluating SE algorithms on
simulated data only might not lead to reliable conclusions
regarding the algorithms performance in real scenarios.

V. CONCLUSION

In this paper, we propose an open-source dataset for the
evaluation of binaural SE algorithms. It includes reverberated
speech, noise and mixture signals, RIRs measured with and
without a dummy head as well as RIRs simulated using ISM.
The dataset is used to study the suitability of using synthetic
data for evaluating binaural SE algorithms. The comparison
between SE performances obtained on recorded and synthetic
data, for 2 different algorithms shows that basic RIR simu-
lations based on ISM are not reliable enough. Depending on
the spatial settings, SE performances can be underestimated
or overestimated.

Additionally, experiments demonstrate that the head shadow
effect can affect dramatically the binaural SE performances
and should be taken into account in the method used to
generate the evaluation data. Finally, using measured RIRs
allows to obtain more reliable data and should be considered
as an interesting flexible alternative to generate evaluation set.

129



Future research directions could include checking if using
a more advanced RIR simulation tool that takes into account
for the head [9], loudspeaker directivity or that is based on a
more realistic acoustic model for reproducing accurately SE
performances obtained on real data.
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